scholarly journals Benchmarking of Machine Learning Models to Assist the Prognosis of Tuberculosis

Author(s):  
Maicon Herverton Lino Ferreira da Silva Barros ◽  
Geovanne Oliveira Alves ◽  
Lubnnia Morais Florêncio Souza ◽  
Élisson da Silva Rocha ◽  
João Fausto Lorenzato de Oliveira ◽  
...  

Tuberculosis (TB) is an airborne infectious disease caused by organisms in the Mycobacterium tuberculosis (Mtb) complex. In many low and middle-income countries, TB remains a major cause of morbidity and mortality. This work performs a benchmarking of machine learning models using a Brazilian health database related to TB confirmed cases and deaths, named SINAN-TB. The goal is to predict the probability of death by TB, assisting the TB prognosis and decision taking process. The database originally has 130 features, and many of these features had missing data, or incorrect data regarding the notification dates or birth dates, or were not related to the clinical and laboratory data. These data are treated, and after the preprocessing step, a new database with 38 features and 24,015 records is generated, having 22,876 TB cases and 1,139 deaths by TB. We design two experiments to investigated how the data unbalancing impacts on the models performance. With the evaluation of the f1-macro metric, we verify that the best result is achieved when using the imbalanced database, with the ensemble model that is composed of gradient boosting (GB), random forest (RF) and multi-layer perceptron (MLP) models.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7834
Author(s):  
Christopher Hecht ◽  
Jan Figgener ◽  
Dirk Uwe Sauer

Electric vehicles may reduce greenhouse gas emissions from individual mobility. Due to the long charging times, accurate planning is necessary, for which the availability of charging infrastructure must be known. In this paper, we show how the occupation status of charging infrastructure can be predicted for the next day using machine learning models— Gradient Boosting Classifier and Random Forest Classifier. Since both are ensemble models, binary training data (occupied vs. available) can be used to provide a certainty measure for predictions. The prediction may be used to adapt prices in a high-load scenario, predict grid stress, or forecast available power for smart or bidirectional charging. The models were chosen based on an evaluation of 13 different, typically used machine learning models. We show that it is necessary to know past charging station usage in order to predict future usage. Other features such as traffic density or weather have a limited effect. We show that a Gradient Boosting Classifier achieves 94.8% accuracy and a Matthews correlation coefficient of 0.838, making ensemble models a suitable tool. We further demonstrate how a model trained on binary data can perform non-binary predictions to give predictions in the categories “low likelihood” to “high likelihood”.


2021 ◽  
Vol 6 ◽  
pp. 309
Author(s):  
Paul Mwaniki ◽  
Timothy Kamanu ◽  
Samuel Akech ◽  
M. J. C Eijkemans

Introduction: Epidemiological studies that involve interpretation of chest radiographs (CXRs) suffer from inter-reader and intra-reader variability. Inter-reader and intra-reader variability hinder comparison of results from different studies or centres, which negatively affects efforts to track the burden of chest diseases or evaluate the efficacy of interventions such as vaccines. This study explores machine learning models that could standardize interpretation of CXR across studies and the utility of incorporating individual reader annotations when training models using CXR data sets annotated by multiple readers. Methods: Convolutional neural networks were used to classify CXRs from seven low to middle-income countries into five categories according to the World Health Organization's standardized methodology for interpreting paediatric CXRs. We compared models trained to predict the final/aggregate classification with models trained to predict how each reader would classify an image and then aggregate predictions for all readers using unweighted mean. Results: Incorporating individual reader's annotations during model training improved classification accuracy by 3.4% (multi-class accuracy 61% vs 59%). Model accuracy was higher for children above 12 months of age (68% vs 58%). The accuracy of the models in different countries ranged between 45% and 71%. Conclusions: Machine learning models can annotate CXRs in epidemiological studies reducing inter-reader and intra-reader variability. In addition, incorporating individual reader annotations can improve the performance of machine learning models trained using CXRs annotated by multiple readers.


2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


Author(s):  
Maicon Herverton Lino Ferreira da Silva Barros ◽  
Geovanne Oliveira Alves ◽  
Lubnnia Morais Florêncio Souza ◽  
Élisson da Silva Rocha ◽  
João Fausto Lorenzato de Oliveira ◽  
...  

Tuberculosis (TB) is an airborne infectious disease caused by organisms in the Mycobacterium tuberculosis (Mtb) complex. In many low and middle-income countries, TB remains a major cause of morbidity and mortality. Once a patient has been diagnosed with TB, it is critical that healthcare workers make the most appropriate treatment decision given the individual conditions of the patient and the likely course of the disease based on medical experience. Depending on the prognosis, delayed or inappropriate treatment can result in unsatisfactory results including the exacerbation of clinical symptoms, poor quality of life, and increased risk of death. This work benchmarks machine learning models to aid TB prognosis using a Brazilian health database of confirmed cases and deaths related to TB in the State of Amazonas. The goal is to predict the probability of death by TB thus aiding the prognosis of TB and associated treatment decision making process. In its original form, the data set comprised 36,228 records and 130 fields but suffered from missing, incomplete, or incorrect data. Following data cleaning and preprocessing, a revised data set was generated comprising 24,015 records and 38 fields, including 22,876 reported cured TB patients and 1,139 deaths by TB. To explore how the data imbalance impacts model performance, two controlled experiments were designed using (1) imbalanced and (2) balanced data sets. The best result is achieved by the Gradient Boosting (GB) model using the balanced data set to predict TB-mortality, and the ensemble model composed by the Random Forest (RF), GB and Multi-layer Perceptron (MLP) models is the best model to predict the cure class.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ye Sheng ◽  
Yasong Wu ◽  
Jiong Yang ◽  
Wencong Lu ◽  
Pierre Villars ◽  
...  

Abstract The Materials Genome Initiative requires the crossing of material calculations, machine learning, and experiments to accelerate the material development process. In recent years, data-based methods have been applied to the thermoelectric field, mostly on the transport properties. In this work, we combined data-driven machine learning and first-principles automated calculations into an active learning loop, in order to predict the p-type power factors (PFs) of diamond-like pnictides and chalcogenides. Our active learning loop contains two procedures (1) based on a high-throughput theoretical database, machine learning methods are employed to select potential candidates and (2) computational verification is applied to these candidates about their transport properties. The verification data will be added into the database to improve the extrapolation abilities of the machine learning models. Different strategies of selecting candidates have been tested, finally the Gradient Boosting Regression model of Query by Committee strategy has the highest extrapolation accuracy (the Pearson R = 0.95 on untrained systems). Based on the prediction from the machine learning models, binary pnictides, vacancy, and small atom-containing chalcogenides are predicted to have large PFs. The bonding analysis reveals that the alterations of anionic bonding networks due to small atoms are beneficial to the PFs in these compounds.


2021 ◽  
Author(s):  
Debarati Bhattacharjee ◽  
Munesh Singh

Abstract The electromyography (EMG) signal is the electrical current generated in muscles due to the inter-change of ions during their contractions. It has many applications in clinical diagnostics and the biomedical field. This paper has experimented with various ensemble algorithms and time-domain features to classify eight types of hand gestures. To train and test the machine learning models, we have extracted eight types of time-domain features from the raw EMG signals, such as integrated EMG (IEMG), variance, mean absolute value (MAV), modified mean absolute value type 1, waveform length, root mean square, average amplitude change, and difference absolute standard deviation value. The ensemble machine learning models are based on stacking, bagging, and gradient boosting. We have used four different-sized training sets to evaluate the performance of these classifiers. From the performance evaluation, we have identified the XG-Boost (gblinear) classifier with the IEMG feature as the best classifier-feature pair. The proposed classifier-feature pair has given better performance with a classification accuracy of 98.33% and a processing time of 5.67 μs for one vector than the existing extended associative memory-MAV classifier-feature pair.


2020 ◽  
Author(s):  
Tahmina Nasrin Poly ◽  
Md.Mohaimenul Islam ◽  
Muhammad Solihuddin Muhtar ◽  
Hsuan-Chia Yang ◽  
Phung Anh (Alex) Nguyen ◽  
...  

BACKGROUND Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems (CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist physicians in making useful clinical decisions and can help shape prescribing behavior. Multiple studies reported that approximately 90%-96% of alerts are overridden by physicians, which raises questions about the effectiveness of CDSSs. There is intense interest in developing sophisticated methods to combat alert fatigue, but there is no consensus on the optimal approaches so far. OBJECTIVE Our objective was to develop machine learning prediction models to predict physicians’ responses in order to reduce alert fatigue from disease medication–related CDSSs. METHODS We collected data from a disease medication–related CDSS from a university teaching hospital in Taiwan. We considered prescriptions that triggered alerts in the CDSS between August 2018 and May 2019. Machine learning models, such as artificial neural network (ANN), random forest (RF), naïve Bayes (NB), gradient boosting (GB), and support vector machine (SVM), were used to develop prediction models. The data were randomly split into training (80%) and testing (20%) datasets. RESULTS A total of 6453 prescriptions were used in our model. The ANN machine learning prediction model demonstrated excellent discrimination (area under the receiver operating characteristic curve [AUROC] 0.94; accuracy 0.85), whereas the RF, NB, GB, and SVM models had AUROCs of 0.93, 0.91, 0.91, and 0.80, respectively. The sensitivity and specificity of the ANN model were 0.87 and 0.83, respectively. CONCLUSIONS In this study, ANN showed substantially better performance in predicting individual physician responses to an alert from a disease medication–related CDSS, as compared to the other models. To our knowledge, this is the first study to use machine learning models to predict physician responses to alerts; furthermore, it can help to develop sophisticated CDSSs in real-world clinical settings.


2021 ◽  
Author(s):  
Bruno Barbosa Miranda de Paiva ◽  
Polianna Delfino Pereira ◽  
Claudio Moises Valiense de Andrade ◽  
Virginia Mara Reis Gomes ◽  
Maria Clara Pontello Barbosa Lima ◽  
...  

Objective: To provide a thorough comparative study among state ofthe art machine learning methods and statistical methods for determining in-hospital mortality in COVID 19 patients using data upon hospital admission; to study the reliability of the predictions of the most effective methods by correlating the probability of the outcome and the accuracy of the methods; to investigate how explainable are the predictions produced by the most effective methods. Materials and Methods: De-identified data were obtained from COVID 19 positive patients in 36 participating hospitals, from March 1 to September 30, 2020. Demographic, comorbidity, clinical presentation and laboratory data were used as training data to develop COVID 19 mortality prediction models. Multiple machine learning and traditional statistics models were trained on this prediction task using a folded cross validation procedure, from which we assessed performance and interpretability metrics. Results: The Stacking of machine learning models improved over the previous state of the art results by more than 26% in predicting the class of interest (death), achieving 87.1% of AUROC and macroF1 of 73.9%. We also show that some machine learning models can be very interpretable and reliable, yielding more accurate predictions while providing a good explanation for the why. Conclusion: The best results were obtained using the meta learning ensemble model Stacking. State of the art explainability techniques such as SHAP values can be used to draw useful insights into the patterns learned by machine-learning algorithms. Machine learning models can be more explainable than traditional statistics models while also yielding highly reliable predictions. Key words: COVID-19; prognosis; prediction model; machine learning


2022 ◽  
Vol 2161 (1) ◽  
pp. 012054
Author(s):  
R M Savithramma ◽  
R Sumathi ◽  
H S Sudhira

Abstract In recent decades machine learning technology has proved its efficiency in most sectors by making human life easier. With this popularity and efficiency, it is applied to design traffic signal control systems to mitigate traffic congestion and distribute waiting delays. Hence, many researchers around the world are working to address this issue. As a part of the solution, this article presents a comparative analysis of various machine learning models to come up with a suitable model for an isolated intersection. In this context, eight machine learning models including Linear Regression, Ridge, Lasso, Support Vector Regression, k-Nearest Neighbour, Decision Tree, Random Forest, and Gradient Boosting Regression Tree are selected. Shivakumara Swamiji Circle (SSC), one of the intersections in Tumakuru, Karnataka, India is selected as a case study area. Essential data is collected from SSC through videography. The selected models are developed to predict green time based on traffic classification and volume in Passenger Car Units (PCU) for each phase on the PyCharm platform. The models are evaluated based on various performance metrics. Results revealed that all the selected models predict green splits with 91% accuracy using traffic classification as input, whereas, models showed 85% accuracy with PCU as input. And also, Gradient Boosting Regression Tree is the best suitable model for the selected intersection, whereas, Decision Tree is not referred model for this application.


Sign in / Sign up

Export Citation Format

Share Document