scholarly journals The Field Guide to 3D Printing in Microscopy

Author(s):  
Mario Del Rosario ◽  
Hannah S. Heil ◽  
Afonso Mendes ◽  
Vittorio Saggiomo ◽  
Ricardo Henriques

The maker movement has reached the optics labs, empowering researchers to actively create and modify microscope designs and imaging accessories. 3D printing has especially had a disruptive impact on the field, as it entails an accessible new approach in fabrication technologies, namely additive manufacturing, making prototyping in the lab available at low cost. Examples of this trend are taking advantage of the easy availability of 3D printing technology. For example, inexpensive microscopes for education have been designed, such as the FlyPi. Also, the highly complex robotic microscope OpenFlexure represents a clear desire for the democratisation of this technology. 3D printing facilitates new and powerful approaches to science and promotes collaboration between researchers, as 3D designs are easily shared. This holds the unique possibility to extend the open-access concept from knowledge to technology, allowing researchers from everywhere to use and extend model structures. Here we present a review of additive manufacturing applications in microscopy, guiding the user through this new and exciting technology and providing a starting point to anyone willing to employ this versatile and powerful new tool.

2020 ◽  
Vol 24 (09) ◽  

For the month of September 2020, APBN dives into the world of 3D printing and its wide range of real-world applications. Keeping our focus on the topic of the year, the COVID-19 pandemic, we explore the environmental impact of the global outbreak as well as gain insight to the top 5 vaccine platforms used in vaccine development. Discover more about technological advancements and how it is assisting innovation in geriatric health screening.


Author(s):  
Ghazi Qaryouti ◽  
Abdel Rahman Salbad ◽  
Sohaib A. Tamimi ◽  
Anwar Almofleh ◽  
Wael A. Salah ◽  
...  

The three-dimensional (3D) printing technologies represent a revolution in the manufacturing sector due to their unique characteristics. These printers arecapable to increase the productivitywithlower complexity in addition tothe reduction inmaterial waste as well the overall design cost prior large scalemanufacturing.However, the applications of 3D printing technologies for the manufacture of functional components or devices remain an almost unexplored field due to their high complexity. In this paper the development of 3D printing technologies for the manufacture of functional parts and devices for different applications is presented. The use of 3D printing technologies in these applicationsis widelyused in modelingdevices usually involves expensive materials such as ceramics or compounds. The recent advances in the implementation of 3D printing with the use of environmental friendly materialsin addition to the advantages ofhighperformance and flexibility. The design and implementation of relatively low-cost and efficient 3D printer is presented. The developed prototype was successfully operated with satisfactory operated as shown from the printed samples shown.


2018 ◽  
Vol 6 (28) ◽  
pp. 7584-7593 ◽  
Author(s):  
Cole D. Brubaker ◽  
Talitha M. Frecker ◽  
James R. McBride ◽  
Kemar R. Reid ◽  
G. Kane Jennings ◽  
...  

3D printing of cadmium sulfur selenide quantum dot functionalized materials compatible with fused deposition modeling type processes and applications.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2900
Author(s):  
Alyaa Mohammed ◽  
Nihad Tareq Khshain Al-Saadi

One of the considerable challenges in the design of cementitious mixtures for additive manufacturing/three-dimensional (3D) printing applications is achieving both suitable fresh properties and significant mechanical strengths. This paper presents the use of graphene oxide (GO) as a promising nano reinforcement material with the potential to improve the printing feasibility and quality of a 3D printed cementitious matrix. Additionally, in this study, a viscosity modifying agent (VMA) was employed as a chemical additive to attain the required consistency and flow. The printed mixture was fabricated using various cementitious materials and waste materials. This study investigated the impact of GO and VMA on the enhancement of the 3D printing of cementitious composites through several tests. A flow test was conducted using the flow table test. The results showed a high fluidity and practical consistency, which are essential for nozzle pumping and accurateness in printed shapes. Furthermore, the bleeding test showed minimal bleeding up to hardening, and a considerable self-cleaning ability was noted during handling when conducting examinations of fresh properties. For hardened properties, the mechanical strengths were exceptionally high, especially at early ages, which is crucial for the stability of sequence layers of printed composites. The tensile strengths were 3.77, 10.5, 13.35, and 18.83 MPa at 1, 3, 7, and 28 days, respectively, and the compressive strengths were 25.1, 68.4, 85.6, and 125.4 MPa at 1, 3, 7, and 28 days, respectively. The test results showed the effectiveness of the fabricated cementitious mixture design method for meeting the requirements for 3D concrete printing applications.


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


Fourth Industrial Revolution gave birth to few different technologies, not known until now. One of them is 3D printing. If subtracting manufacturing is part of Industrial Revolution 3, Additive manufacturing is for sure part of Industrial Revolution 4.0. 3D printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. 3D printers are used to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Some models of 3D Printers can print uniquely shaped sugar confections in flavors such as chocolate, vanilla, mint, cherry, sour apple and watermelon. They can also print custom cake toppers–presumably in the likeness of the guest of honor.


2015 ◽  
Vol 825-826 ◽  
pp. 763-770 ◽  
Author(s):  
Stefan Junk ◽  
Rebecca Matt

Today, 3D-printing with polymer plaster composites is a common method in Additive Manufacturing. This technique has proven to be especially suitable for the production of presentation models, due to the low cost of materials and the possibility to produce color-models. But nowadays it requires refinishing through the manual application of a layer of resin. However, the strength of these printed components is very limited, as the applied resin only penetrates a thin edge layer on the surface. This paper develops a new infiltration technique that allows for a significant increase in the strength of the 3D-printed component. For this process, the components are first dehydrated in a controlled two-tier procedure, before they are then penetrated with high-strength resin. The infiltrate used in this process differs significantly from materials traditionally used for infiltration. The result is an almost complete penetration of the components with high-strength infiltrate. As the whole process is computer-integrated, the results are also easier to reproduce, compared to manual infiltration. On the basis of extensive material testing with different testing specimen and testing methods, it can be demonstrated that a significant increase in strength and hardness can be achieved. Finally, this paper also considers the cost and energy consumption of this new infiltration method. As a result of this new technology, the scope of applicability of 3D-printing can be extended to cases that require significantly more strength, like the production of tools for the shaping of metals or used for the molding of plastics. Furthermore, both the process itself and the parameters used are monitored and can be optimized to individual requirements and different fields of application.


1994 ◽  
Vol 27 (4) ◽  
pp. 483-488
Author(s):  
J.M. Pastor ◽  
C. Balaguer ◽  
A. García ◽  
L.F. Peñin ◽  
F.J. Rodriguez ◽  
...  

2017 ◽  
Author(s):  
Matthew Rimmer

Rimmer, Matthew (2017) The Maker Movement: Copyright law, remix culture, and 3D printing. University of Western Australia Law Review, 41(2), pp. 51-84.There has been much interest in how intellectual property law, policy, and practice will adapt to the emergence of 3D printing and the maker movement. Intellectual property lawyers will have to grapple with the impact of additive manufacturing upon a variety of forms of intellectual property – including copyright law, trade mark law, designs law, patent law, and trade secrets. The disruptive technology of 3D printing will both pose opportunities and challenges for legal practitioners and policy-makers.Rather than try to survey this expanding field, this article considers a number of early conflicts and skirmishes in respect of copyright law and 3D printing. There has been significant interest in the impact of 3D printing on copyright law and the creative industries. There have been classic issues raised about copyright subsistence, and the overlap between copyright law and designs. There has also been a moral panic about 3D printing facilitating copyright infringement – like peer to peer networks such as Napster in the past. There has been a use of open licensing models such as Creative Commons licensing to facilitate the sharing of 3D printing files. Such battles highlight a conflict between the open culture of the Maker Movement, and the closed culture of copyright industries. In many ways, such conflicts touch upon classic issues involved in ‘information environmentalism’. Part II looks at the controversy over Left Shark. In particular, it examines the copyright claims of Katy Perry in respect of the Left Shark figure. Part III considers questions about scanning. Augustana College tried to assert copyright against a maker, Jerry Fisher, who was scanning statues of Michelangelo (although copyright had long since expired in such work). Part IV focuses upon copyright law, 3D printing and readymades. The Estate of Marcel Duchamp lodged a copyright protest over a 3D printed set of chess, based on the work of Marcel Duchamp. Part V examines the intervention of a number of 3D printing companies in a Supreme Court of the United States dispute in Star Athletic v. Varsity Brands. Part VI considers copyright law and intermediary liability. Part VII examines the operation of technological protection measures in the context of copyright law and 3D Printing


Sign in / Sign up

Export Citation Format

Share Document