scholarly journals Taxonomy-focused Natural Product Databases for Carbon-13 NMR-based Dereplication

Author(s):  
Jean-Marc Nuzillard

The recent revival of the study of organic natural products as renewable sources of medicinal drugs, cosmetics, dyes, and materials motivated the creation of general-purpose structural databases. Dereplication, the efficient identification of already reported compounds, relies on the grouping of structural, taxonomic and spectroscopic databases that focus on a particular taxon (species, genus, family, order…). A set of freely available python scripts, CNMRPredict, is proposed for the quick supplementation of taxon-oriented search results from the LOTUS database (lotus.naturalproducts.net) with predicted carbon-13 NMR data from the ACD/Labs (acdlabs.com) CNMR predictor and DB software to provide easily searchable databases. The database construction process is illustrated using Brassica rapa as taxon example.

Analytica ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 50-56
Author(s):  
Jean-Marc Nuzillard

The recent revival of the study of organic natural products as renewable sources of medicinal drugs, cosmetics, dyes, and materials motivated the creation of general purpose structural databases. Dereplication, the efficient identification of already reported compounds, relies on the grouping of structural, taxonomic and spectroscopic databases that focus on a particular taxon (species, genus, family, order, etc.). A set of freely available python scripts, CNMR_Predict, is proposed for the quick supplementation of taxon oriented search results from the naturaL prOducTs occUrrences database (LOTUS, lotus.naturalproducts.net) with predicted carbon-13 nuclear magnetic resonance data from the ACD/Labs CNMR predictor and DB software (acdlabs.com) to provide easily searchable databases. The database construction process is illustrated using Brassica rapa as a taxon example.


2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Eleni Koulouridi ◽  
Marilia Valli ◽  
Fidele Ntie-Kang ◽  
Vanderlan da Silva Bolzani

Abstract Databases play an important role in various computational techniques, including virtual screening (VS) and molecular modeling in general. These collections of molecules can contain a large amount of information, making them suitable for several drug discovery applications. For example, vendor, bioactivity data or target type can be found when searching a database. The introduction of these data resources and their characteristics is used for the design of an experiment. The description of the construction of a database can also be a good advisor for the creation of a new one. There are free available databases and commercial virtual libraries of molecules. Furthermore, a computational chemist can find databases for a general purpose or a specific subset such as natural products (NPs). In this chapter, NP database resources are presented, along with some guidelines when preparing an NP database for drug discovery purposes.


2018 ◽  
Author(s):  
Jonathan J. Mills ◽  
Kaylib R. Robinson ◽  
Troy E. Zehnder ◽  
Joshua G. Pierce

The lipoxazolidinone family of marine natural products, with an unusual 4-oxazolidinone heterocycle at their core, represents a new scaffold for antimicrobial discovery; however, questions regarding their mechanism of action and high lipophilicity have likely slowed follow-up studies. Herein, we report the first synthesis of lipoxazolidinone A, 15 structural analogs to explore its active pharmacophore, and initial resistance and mechanism of action studies. These results suggest that 4-oxazolidinones are valuable scaffolds for antimicrobial development and reveal simplified lead compounds for further optimization.


2018 ◽  
Author(s):  
William A. Shirley ◽  
Brian P. Kelley ◽  
Yohann Potier ◽  
John H. Koschwanez ◽  
Robert Bruccoleri ◽  
...  

This pre-print explores ensemble modeling of natural product targets to match chemical structures to precursors found in large open-source gene cluster repository antiSMASH. Commentary on method, effectiveness, and limitations are enclosed. All structures are public domain molecules and have been reviewed for release.


2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


2019 ◽  
Vol 36 (1) ◽  
pp. 248-249 ◽  
Author(s):  
James B. McAlpine ◽  
Shao-Nong Chen ◽  
Andrei Kutateladze ◽  
John B. MacMillan ◽  
Giovanni Appendino ◽  
...  

Correction for ‘The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research’ by James B. McAlpine et al., Nat. Prod. Rep., 2018, DOI: 10.1039/c7np00064b.


2021 ◽  
Author(s):  
Nengzhong Wang ◽  
Zugen Wu ◽  
Junjie Wang ◽  
Nisar Ullah ◽  
Yixin Lu

A comprehensive and updated summary of asymmetric organocatalytic annulation reactions is presented; in particular, the applications of these annulation strategies to natural products synthesis are highlighted.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


Sign in / Sign up

Export Citation Format

Share Document