scholarly journals Synthesis of Carbon Nanotubes (CNTs) from Poultry Litter for Removal of Chromium Cr (VI) from Wastewater

Author(s):  
Noor Haleem ◽  
Yousuf Jamal ◽  
Shahid Nawaz Khan ◽  
Muhammad Anwar Baig

Pakistan being an agricultural country is raising 146.5 million commercial and domestic poultry birds which generate around 544,831 tons of waste. This waste finds its final disposal in agricultural land as soil fertilizer or disposal site amendment. The uncontrolled use of poultry litter for this purpose results in environmental impacts such as the emission of methane, a greenhouse gas. However, other options like thermochemical conversion of this waste can offer a better solution wherein poultry litter can be used as low-cost carbon sources for the synthesis of Carbon Nanotubes (CNTs). In this study, efforts have been made to utilize this cheap and plenty of available carbon source for synthesis of CNTs in the presence of Ni/Mo/MgO as a catalyst, through pyrolysis. The optimum mole ratio of catalyst (4:0.2:1) was found to yield more carbon product. Furthermore, process parameters such as temperature, time, polymer & catalyst weight were also optimized. The best possible process parameters that resulted (pyrolysis time (12 min), temperature (825◦C), and catalyst weight (100 mg) good yield of CNTs . The structure and morphology of produced nanotubes were confirmed through X-ray Diffractometer (X-RD) & Scanning Electron Microscopy (SEM). The environmental application of the nanotubes was tested in synthetic chromium solution in the lab using a batch experiment. Different experimental conditions (pH, adsorbent dosage and contact time) were optimized to enhance the adsorption of Cr (VI) by carbon nanotubes and UV-Visible spectrophotometer was used at 540nm to measure the absorbance of Cr (VI). Results show that up to 81.83% of Cr (VI) removal was achieved by using 8 mg of CNTs at pH 3 with 400 rpm at 180 min of contact time. Thus, it was concluded that poultry litter can be a useful source for the synthesis of CNTs and thereby removal of Cr (VI) from industrial tanneries wastewater.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5195
Author(s):  
Noor Haleem ◽  
Yousuf Jamal ◽  
Shahid Nawaz Khan ◽  
Muhammad Anwar Baig ◽  
Maryam Wahab ◽  
...  

Pakistan, an agricultural country, raises 146.5 million commercial and domestic poultry birds, which generate around 544,831 tons of waste per year. This waste finds its final disposal in agricultural land as soil fertilizer or disposal site amendment. The usage of poultry litter for this purpose is uncontrolled, which results in environmental degradation such as emission of greenhouse gases, e.g., methane. However, alternative options such as thermochemical conversion of poultry litter can offer better solutions where this waste can be used as a low-cost carbon source for the synthesis of Multiwalled Carbon Nanotubes (MWCNTs). In this study, efforts were made to utilize this cheap and plentiful carbon source for the synthesis of CNTs in the presence of Ni/Mo/MgO as a catalyst, through pyrolysis. For a better yield of carbon product, the optimum ratio for the catalysts (Ni/Mo/MgO) was found to be 4:0.2:1. Furthermore, the process parameters were also optimized for better carbon yield. A good yield of CNTs resulted from a pyrolysis time of 12 min, a temperature of 825 °C, and a catalyst weight of 100 mg. The structure and morphology of the produced nanotubes were confirmed through X-ray Diffractometer (X-RD) and Scanning Electron Microscopy (SEM). The environmental application of the nanotubes was tested in a synthetic chromium solution in the lab using a batch experiment. Different experimental conditions (pH, adsorbent dosage, and contact time) were optimized to improve the adsorption of Cr (VI) by carbon nanotubes and a UV-Visible spectrophotometer was used at 540 nm to measure the absorbance of Cr (VI). The results showed that up to 81.83% of Cr (VI) removal was achieved by using 8 mg of CNTs at pH 3 with 400 rpm at 180 min of contact time. Thus, it was concluded that poultry litter can be a useful source for the synthesis of MWCNTs and thereby removal of Cr (VI) from industrial tanneries’ wastewater.


2010 ◽  
Vol 636-637 ◽  
pp. 703-708 ◽  
Author(s):  
E. Borowiak-Palen ◽  
A. Steplewska ◽  
A. Bachmatiuk ◽  
M.H. Rümmeli ◽  
R.K. Kalenczuk

In this contribution we present high resolution transmission electron microscopy (HR-TEM) and Raman studies on the synthesis of carbon nanotubes using platinum supported on MgO in alcohol - chemical vapour deposition (A-CVD). For comparison copper and iron catalysts mixed with the same metal loading in MgO and the same process parameters in A-CVD have been tested. Our findings show that the choice of catalyst utilized under the same experimental conditions strongly influences the final morphology of the carbon nanostructures. Application of Pt/MgO in CVD results in doublewalled carbon nanotubes (DWCNT) and multiwalled carbon nanotubes (MWCNT). Cu/MgO mixtures lead to the synthesis of copper filled multiwalled carbon nanotubes (Cu-MWCNT) and iron capsules surrounded by multiwalled carbon shells (Fe-MWCS), respectively. Our findings indicate that the three discussed metals interact differently with the substrate leading to the formation of different sized catalyst particles. The analysis of the particles size in the catalyst precursors and in the final products is also described in this contribution.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1529-1534 ◽  
Author(s):  
YULIANG AN ◽  
YANQIU LIU ◽  
XIA YUAN ◽  
HAO TAN

Here we used the iron oxide nanoparticles derived from ferritin as catalyst for the synthesis of carbon nanotubes (CNTs) by the chemical vapor deposition (CVD) of coal gas. It has been found that the structure and morphology of CNTs can be tailored, to some degree, by varying the experimental conditions such as catalyst loading and process parameters. In addition to straight CNTs, some Y-branched CNTs were also obtained, which might be due to the sulfur species in the coal gas.


2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Yusuf Zaim Hakim ◽  
Yoki Yulizar ◽  
Adi Nurcahyo ◽  
Magun Surya

Numerous complex methods have been developed for the preparation of carbon nanotubes (CNT) such as laser vaporization, arc discharge, pyrolysis, and chemical vapour deposition (CVD). In this study, an environmentally friendly and convenient method called one-step water assisted (quenching) synthesis method was conducted from graphite flakes, which were taken from coconut shell wastes to produce carbon nanotubes. Chemical and physical structure of the carbon nanotubes were characterized by FTIR (Fourier Transform Infrared), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM). Adsorption performance of heavy metals Pb(II) ions by CNTs has been evaluated using the stirring method, and the concentration of Pb(II) ions has been determined using Atomic Absorption Spectroscopy (AAS). The adsorption conditions such as pH and contact time have been obtained. The results showed that carbon nanotubes were a bit successfully formed, in which the tubes distribution are scattered irregularly. The average tube diameter was 123 nm.  During the adsorption test, it was found that the adsorption was proportional to the contact time, in which the optimum contact time was 20 minutes. The optimum pH of Pb(II) ions absorption was 5 where the potential for Pb(II) ions absorption was 120 %. The results indicate the true potential of this green chemistry based method, and it opens the chance for possibility to produce carbon nanotubes at a larger scale.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


2021 ◽  
Vol 13 (8) ◽  
pp. 4481
Author(s):  
Marija Banožić ◽  
Antun Jozinović ◽  
Jovana Grgić ◽  
Borislav Miličević ◽  
Stela Jokić

Three fractions of tobacco waste (scrap, dust and midrib) were subjected to a high voltage electric discharge (HVED) assisted extraction procedure under different experimental conditions: solvent:solid ratio (300, 500, 700 mL/g), frequency (40, 70, 100 Hz) and treatment time (15, 30, 45 min), in order to study the influence of these conditions on the content of chlorogenic acid. The content of chlorogenic acid ranged from 1.54 to 3.66 mg/100 g for scrap, from 1.90 to 2.97 mg/100 g for dust, and from 2.30 to 3.38 mg/100 g for midrib extract, showing a strong dependence on the applied process parameters. The temperature change and the change in pH and electrical conductivity of the extracts after high voltage discharge treatment were also observed. The studied process parameters showed a statistically significant effect on the chemical and physical properties of the extracts from tobacco waste as well as on the content of chlorogenic acid, indicating the potential of HVED assisted processes in the separation of chlorogenic acid from tobacco industry waste. Multiple regression analysis was used to fit the results for the chlorogenic acid to a second order polynomial equation and the optimum conditions were determined.


Sign in / Sign up

Export Citation Format

Share Document