scholarly journals Astrocyte Stimulates Microglial Proliferation and M2 Polarization in vitro through Cross-Talk between Astrocyte and Microglia

Author(s):  
Sumin Kim ◽  
Youngsook Son

Microglia are resident immune cells of the central nervous system such as brain-specific macrophages and also known to regulate the innate immune functions of astrocytes through secretory molecules. This conversation plays an important role in brain functions and homeostasis as well as in neuropathologic disease. In this study, we aimed to elucidate whether astrocytes and microglia can cross-talk to induce microglial polarization and proliferation, which can be further regulated under the brain stroke-mimic microenvironment. Microglia in mixed glial culture increased their survival and proliferation and altered to the M2 microglia, whose role was provided by CD11b-GFAP+ astrocytes by showing approximately tenfold increase in microglia cell proliferation after the astrocyte reconstitution. Furthermore, GM-CSF stimulated microglial proliferation approximately tenfold and induced to CCR7+ M1 microglia, whose phenotype could be suppressed by anti-inflammatory cytokines such as IL-4, IL-10, and Substance-P. Also, astrocyte in the microglia co-culture revealed A2 phenotype, which could be activated to A1 astrocyte by TNFα and IFNγ under the stroke-mimic condition. Altogether, astrocyte in the mixed glial culture stimulated the microglia proliferation and M2 polarization possibly through its acquisition of A2 phenotype, both of which could be converted to M1 microglia and A1 astrocytes under the inflammatory stroke-mimic environment. This study demonstrated that microglia and astrocyte can be polarized to M2 microglia and A2 astrocytes respectively through the cross-talk in vitro and provided a system to explore how microglia and astrocyte may behave in the inflammatory disease milieu after in vivo transplantation.

2021 ◽  
Vol 22 (16) ◽  
pp. 8800
Author(s):  
Sumin Kim ◽  
Youngsook Son

Microglia are resident immune cells of the central nervous system that act as brain-specific macrophages and are also known to regulate the innate immune functions of astrocytes through secretory molecules. This communication plays an important role in brain functions and homeostasis as well as in neuropathologic disease. In this study, we aimed to elucidate whether astrocytes and microglia could crosstalk to induce microglial polarization and proliferation, which can be further regulated under a microenvironment mimicking that of brain stroke. Microglia in a mixed glial culture showed increased survival and proliferation and were altered to M2 microglia; CD11b−GFAP+ astrocytes resulted in an approximately tenfold increase in microglial cell proliferation after the reconstitution of astrocytes. Furthermore, GM-CSF stimulated microglial proliferation approximately tenfold and induced them to become CCR7+ M1 microglia, which have a phenotype that could be suppressed by anti-inflammatory cytokines such as IL-4, IL-10, and substance P. In addition, the astrocytes in the microglial co-culture showed an A2 phenotype; they could be activated to A1 astrocytes by TNF-α and IFN-γ under the stroke-mimicking condition. Altogether, astrocytes in the mixed glial culture stimulated the proliferation of the microglia and M2 polarization, possibly through the acquisition of the A2 phenotype; both could be converted to M1 microglia and A1 astrocytes under the inflammatory stroke-mimicking environment. This study demonstrated that microglia and astrocytes could be polarized to M2 microglia and A2 astrocytes, respectively, through crosstalk in vitro and provides a system with which to explore how microglia and astrocytes may behave in the inflammatory disease milieu after in vivo transplantation.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


Folia Medica ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. 289-296
Author(s):  
Jakob Korf

Abstract Qualia are private conscious experiences of which the associated feelings can be reported to other people. Whether qualia are amenable to scientific exploration has often been questioned, which is challenged by the present article. The following arguments are given: 1. the configuration of the brain changes continuously and irreversibly, because of genetic and environmental influences and interhuman communication; 2. qualia and consciousness are processes, rather than states; 3. private feelings, including those associated with qualia, should be positioned in the context of a personal brain as being developed during life; 4. consciousness and qualia should be understood in the context of general system theory, thus concluding that isolated, in vitro, properties of neurons and other brain constituents might marginally contribute to the understanding of higher brain functions, mind or qualia; 5. current in vivo approaches have too little resolution power - in terms of space and time - to delineate individual and subjective brain processes. When subtle personalized properties of the nervous system can be assessed in vivo or in vitro, qualia can scientifically be investigated. We discuss some approaches to overcome these barriers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun-Ling Liang ◽  
Hongliang Jiang ◽  
Wenxuan Feng ◽  
Huazhen Liu ◽  
Ling Han ◽  
...  

Macrophages, a major subset of innate immune cells, are main infiltrating cells in the kidney in lupus nephritis. Macrophages with different phenotypes exert diverse or even opposite effects on the development of lupus nephritis. Substantial evidence has shown that macrophage M2 polarization is beneficial to individuals with chronic kidney disease. Further, it has been reported that PD-1 ligands (PD-Ls) contribute to M2 polarization of macrophages and their immunosuppressive effects. Total glucosides of paeony (TGP), originally extracted from Radix Paeoniae Alba, has been approved in China to treat some autoimmune diseases. Here, we investigated the potentially therapeutic effects of TGP on lupus nephritis in a pristane-induced murine model and explored the molecular mechanisms regulating macrophage phenotypes. We found that TGP treatment significantly improved renal function by decreasing the urinary protein and serum creatinine, reducing serum anti-ds-DNA level and ameliorating renal immunopathology. TGP increased the frequency of splenic and peritoneal F4/80+CD11b+CD206+ M2-like macrophages with no any significant effect on F4/80+CD11b+CD86+ M1-like macrophages. Immunofluorescence double-stainings of the renal tissue showed that TGP treatment increased the frequency of F4/80+Arg1+ subset while decreasing the percentage of F4/80+iNOS+ subset. Importantly, TGP treatment increased the percentage of both F4/80+CD11b+PD-L1+ and F4/80+CD11b+PD-L2+ subsets in spleen and peritoneal lavage fluid as well as the kidney. Furthermore, TGP augmented the expressions of CD206, PD-L2 and phosphorylated STAT6 in IL-4-treated Raw264.7 macrophages in vitro while its effects on PD-L2 were abolished by pretreatment of the cells with an inhibitor of STAT6, AS1517499. However, TGP treatment did not affect the expressions of STAT1 and PD-L1 in Raw264.7 macrophages treated with LPS/IFN-γ in vitro, indicating a possibly indirect effect of TGP on PD-L1 expression on macrophages in vivo. Thus, for the first time, we demonstrated that TGP may be a potent drug to treat lupus nephritis by inducing F4/80+CD11b+CD206+ and F4/80+CD11b+PD-L2+ macrophages through IL-4/STAT6/PD-L2 signaling pathway.


Author(s):  
Jiankang Liu

Traditional Chinese Medicine (TCM) modernization has been proposed for many years, but the progress is still slow due to both ideological and technical obstacles. When I went to Japan in 1989, I found Japan has made a great progress on TCM by using modern technology. Therefore, I have studied a fine extract prepared from medicinal herbs (renamed Yi-Zhi-Yi-Shou, YZYS), a prescription of Dowager Cixi’s Yanling-Yishou-Dan of Qing Dynasty, with the current drug investigation strategies. I examined its antioxidant activity both in vitro and in vivo. The in-vitro studies found that YZYS possesses strong antioxidant capacity, such as scavenging various kinds of free radicals, and inhibits free radical-induced peroxidation of brain homogenate, microsomes, mitochondria, amino acids, deoxyribose and DNA. The in-vivo study with immobilization-induced emotional stress in rats, showed that YZYS effectively inhibits stress-induced stomach ulcers and oxidative damage in plasma and the brain. In addition, YZYS is shown to be non-toxic in both acute and chronic toxicity tests. These studies demonstrate that YZYS is a potent natural antioxidant and offer theoretical evidence for the beneficial effect of YZYS on health and brain functions, and that TCM prescriptions can be studied scientifically as modern medical drugs.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2143-2151 ◽  
Author(s):  
JC Reubi ◽  
B Waser ◽  
U Horisberger ◽  
E Krenning ◽  
SW Lamberts ◽  
...  

Abstract Receptors for the neuropeptide somatostatin (SS) were evaluated in vitro and in vivo in various human lymphatic tissues, ie, thymus, spleen, and lymph nodes; thymic carcinoids and thymomas were also tested. The receptors were measured in vitro using receptor autoradiography on tissue sections incubated with the SS analog 125I- [Tyr3]-octreotide or 125I-[Leu8,D-Trp22,Tyr25]-SS-28. All tissues were SS-receptor positive for either radioligand, except the thymomas. In thymic tissue, the receptors were diffusely located in the medulla, presumably on epithelial cells. In the spleen, the red pulp was strongly labeled. In the lymph nodes, the germinal centers were preferentially labeled. In all tissues, the receptors were of high affinity (kd thymus, 0.84 nmol/L; kd spleen, 1.6 nmol/L; kd lymph node, 0.62 nmol/L) and specific for SS. Displacement by nanomolar concentrations of SS-14, SS-28, and octreotide was observed, as was guanosine triphosphate dependency. The in vivo visualization of somatostatin receptors was performed after injection of 111In-DTPA- octreotide and gamma-camera scintigraphy. The spleen, but not thymus or lymph nodes, were visualized. These data suggest an important role for SS in regulating immune functions through SS receptors in thymus, spleen, and lymph nodes. Furthermore, SS may regulate neuroendocrine functions in the thymus.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4803-4803
Author(s):  
Weihua Song ◽  
Teru Hideshima ◽  
Yu-Tzu Tai ◽  
Kenneth C. Anderson ◽  
Nikhil C. Munshi

Abstract Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agent which targets cell membranes and inhibits Akt activation. Perifosine inhibits multiple myeloma (MM) cell growth in vitro and in vivo mouse model. Currently perifosine is under the evaluation of phase II clinical trail in MM. Although perifosine has shown significant direct antitumor effects, its effect on immune system has not yet been clarified. The objective of this study is to evaluate the effects of perifosine on the activity of antigen presenting cells (APCs). Monocyte-derived dendritic cells (DCs) from normal human donors were used as the APCs, and mature DCs were obtained by the treatment of TNF-α and IL-1β. Perifosine was used at the concentrations of 2.5 uM, 5 uM and 10 uM for the treatment with DCs. We first evaluated the effect of perifosine on the survival of DCs. We observed that the perifosine treatment up to 48 hours had no effect on viability (>90%) of DCs, assessed by annexin V and PI staining. Alteration of phenotype by perifosine on DCs was further examined by flow cytometry. Our results demonstrated that with dose-dependent manner, perifosine led to a significant down-regulation of surface antigens on immature DCs at 24 and 48 hours, which associated to costimulation (CD40, CD80 and CD86), antigen presentation (HLA-ABC, HLA-DPQR) and maturation (CD83). However, we did not observed significant effect of perifosine on above surface markers on mature DCs. Since DCs play a crucial role on the regulation of Th1/Th2 immune responses by the production of IL-12, we next evaluated IL-12 secretion by DCs with and without perifosine treatment. Importantly, treatment with perifosine significantly decreased LPS-induced-IL-12 production, compared to untreated DCs (untrt vs. trt = 192.29 vs. 166.23 pg/ml (2.5uM), 111.19 pg/ml (5uM) and 44.886 pg/ml (10uM)) at 24 hours. To assess the effect of perifosine on DCs function on the regulation of T cell responses, we stimulated allogenic T cells with mature DCs with or without the pre-treatment of perifosine. The proliferation assay by 3H-TdR incorporation and IFN-γ production by ELISA indicated perifosine-treated DCs had no significant effect on the regulation of T cells function. Taken together, these results showed that DCs function are influenced by the treatment of perifosine. Our pre-clinical data therefore indicates the need to monitor immune functions in patients under the Akt inhibitor treatment.


2016 ◽  
Vol 31 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Pirathiv Kugathasan ◽  
Jessica Waller ◽  
Ligia Westrich ◽  
Aicha Abdourahman ◽  
Joseph A Tamm ◽  
...  

Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.


Sign in / Sign up

Export Citation Format

Share Document