scholarly journals Physiological Stress in Rescued Wild Koalas (Phascolarctos cinereus) Being Held in a Rehabilitation Sanctuary: A Pilot Study

Author(s):  
Renae Charalambous ◽  
Troy Simonato ◽  
Matthew Peel ◽  
Edward Narayan

Koalas (Phascolarctos cinereus) are one of Australia's most charismatic native small marsupial species. Unfortunately, populations of koalas are rapidly declining throughout Australia and they continue to face increasing pressure from a changing ecosystem. Negative stimulants in the environment can elicit stress responses through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Depending on the duration of the negative stimulant, the stress response can lead to either acute or chronic side effects, and is shown through the activation of the neuroendocrine stress system and the release of glucocorticoids (e.g., cortisol). Wild koalas entering clinical care face novel stressors that can be out of a wildlife carer's control. In this pilot study, we monitored physiological stress in three wild koalas at a wildlife rehabilitation centre in New South Wales, Australia. Acute and chronic stress was indexed non-invasively, with faecal samples taken to evaluate acute stress, and fur samples taken to evaluate chronic stress. Sampling occurred sporadically over four months, from the start of September 2018 to the end of December 2018. Results attempt to understand the stress response of koalas to negative stimulants in the environment by comparing faecal glucocorticoids on days where a known stressor was recorded with days where no known stressor was recorded. Furthermore, variations in faecal and fur glucocorticoids were compared between the three koalas in this study. To our knowledge, this is the first evidence of stress tracking of wild rescued koalas in a sanctuary. We suggest that further monitoring of baseline, acute and chronic stress will be needed to better understand how koalas respond to negative stimulants associated with clinical care.

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2864
Author(s):  
Renae Charalambous ◽  
Troy Simonato ◽  
Matthew Peel ◽  
Edward J. Narayan

Koalas (Phascolarctos cinereus) are one of Australia’s most charismatic native small marsupial species. Unfortunately, populations of koalas are rapidly declining throughout Australia as they continue to face increasing pressure from a changing ecosystem. All wildlife species to some degree will use their hypothalamic–pituitary–adrenal (HPA) axis in response to stress. Depending on the duration of activation, the stress response can lead to either acute or chronic side effects and is modulated through the neuroendocrine stress system with the release of catecholamines and glucocorticoids (e.g., cortisol). It is well known that rehabilitation sanctuaries are inherently stressful for all animals, in particular for rescued wild koalas, as it is an unfamiliar environment where the animals cannot predict or control what will happen to them. In this pilot study, we set out to quantify faecal and fur cortisol metabolites in wild rescued koalas undergoing wildlife rehabilitation. Absolute levels of acute and chronic stress were indexed non-invasively, with faecal samples taken to evaluate acute stress, and fur samples taken to evaluate chronic stress. Sampling occurred sporadically over four months (the start of September 2018 to the end of December 2018), and was performed on three rescued koalas (Maree, Tai, and Solstice) being held at the rehabilitation centre. Results of this study show that between the three koalas, the highest recorded faecal cortisol result was 241 ng/g, and the lowest recorded faecal cortisol result was 4 ng/g, whereas the highest recorded fur cortisol result was 1.75 ng/g, and the lowest recorded fur cortisol result was 0.10 ng/g. Statistically, there was a significant difference between all three koalas and their faecal cortisol responses, as well as their fur cortisol responses. Statistically for Maree and Solstice, there was a significant difference in their faecal cortisol response between days when a stressor was recorded, and days when a stressor was not recorded. However, statistically for Tai, this was not the case, as there was no significant difference in his faecal cortisol response between days when a stressor was recorded, and days when a stressor was not recorded. In summary, the hypothesis that faecal glucocorticoids and fur glucocorticoids between koalas will differ based on individual responses to stressors was true as a whole, but individually, this hypothesis was true for Maree and Solstice, but untrue for Tai. The use of biological samples such as faeces and fur to obtain readings of glucocorticoids is a method of measuring absolute levels of physiological stress that is still evolving for koalas, and there is no current glucocorticoid baseline with which to compare the results of this study; although, measuring faecal and fur glucocorticoids is the first step in understanding how koalas undergoing wildlife rehabilitation respond to stressors.


2018 ◽  
Author(s):  
Franziska Lautenbach

BACKGROUND Dealing with stress is of central importance. Lately, smartphone applications (apps) are deployed in stress interventions as they offer maximal flexibility for users. First results of experimental studies show that anti-stress apps effect subjective perception of stress positively (Ly et al., 2014). However, current literature lacks studies on physiological stress reactions (e.g., cortisol), although they are of special interest to health issues. OBJECTIVE Therefore, the aim of this study was to investigate the effectiveness of an anti-stress app in chronic and acute stress reduction on a physiological (cortisol) and psychological level (subjective perception of stress) in comparison to a face-to-face and a control group in a pre-post design, for the first time. METHODS Sixty-two participants took part in the pretesting procedure (drop-out of 53 %). Based on age, gender, physical activity and subjectively perceived acute stress due to the Trier Social Stress Test for groups (TSST-G; von Dawans et al., 2011) as well as based on subjectively chronic stress assessed during the pretest, participants were parallelized in three groups (anti-stress-app: n = 10, face-to-face: n = 11, control group: n = 9). RESULTS After six weeks of the cognitive-based resource-oriented intervention, participants were exposed to the TSST-G for post testing. Results did not show a change of cortisol secretion or cognitive appraisal of the acute stressor. Further, no changes were detected in the chronic physiological stress reaction. CONCLUSIONS Possible causes are discussed extensively. CLINICALTRIAL no


2020 ◽  
pp. 101-118
Author(s):  
James M. Bjork ◽  
Nicholas D. Thomson

Stress is both a critical contributor and consequence of substance use disorder (SUD). First, exaggerated subjective stress responses are characteristic of affective symptomatology such as depression, bipolar disorder, generalized anxiety, and posttraumatic stress disorder (sometimes stemming from histories of abuse) that have been prognostic of development of addiction in longitudinal studies. Substance use is negatively reinforced in many at-risk and addicted individuals because it may acutely alleviate stress. Second, chronic administration of commonly abused substances alters physiological stress response systems, especially during acute withdrawal. Third, acute stress responses blunt the addicted individual’s frontocortically mediated behavioral repertoire (solution space) in favor of reflexive behavioral biases toward relief-based substance use. Therefore, acute stress responses are a strong trigger for relapse to substance use during extended recovery. These findings have collectively led to approaches to SUD relapse prevention that pharmacologically blunt components of the stress response, but these agents have not reliably shown success in human clinical trials. This chapter reviews these different relationships between stress and addiction and offers future avenues for additional research.


2005 ◽  
Vol 35 (3) ◽  
pp. 541-556 ◽  
Author(s):  
Eric Mellina ◽  
Scott G Hinch ◽  
Edward M Donaldson ◽  
Greg Pearson

The impacts associated with streamside clear-cut logging (e.g., increased temperatures and sedimentation, loss of habitat complexity) are potentially stressful to stream-dwelling fish. We examined stream habitat and rainbow trout physiological stress responses to clear-cut logging in north-central British Columbia using 15 streams divided into three categories: old growth (reference), recently logged (clear-cut to both banks 1–9 years prior to the study), and second growth (clear-cut 25–28 years prior to the study). We used plasma cortisol and chloride concentrations as indicators of acute stress, and interrenal nuclear diameters, impairment of the plasma cortisol response, and trout condition and length-at-age estimates as indicators of chronic stress. No statistically significant acute or chronic stress responses to streamside logging were found, despite increases in summertime stream temperatures (daily maxima and diurnal fluctuations) and a reduction in the average overall availability of pool habitat. Our observed stress responses were approximately an order of magnitude lower than what has previously been reported in the literature for a variety of different stressors, and trout interrenal nuclear diameters responses to the onset of winter were approximately five times greater than those to logging. The overall consistency of our results suggests that the impacts of streamside clear-cut logging are not acutely or chronically stressful to rainbow trout in our study area.


2006 ◽  
Vol 274 (1609) ◽  
pp. 577-582 ◽  
Author(s):  
Thomas Rödl ◽  
Silke Berger ◽  
L Michael Romero ◽  
Martin Wikelski

Tame behaviour, i.e. low wariness, in terrestrial island species is often attributed to low predation pressure. However, we know little about its physiological control and its flexibility in the face of predator introductions. Marine iguanas ( Amblyrhynchus cristatus ) on the Galápagos Islands are a good model to study the physiological correlates of low wariness. They have lived virtually without predation for 5–15 Myr until some populations were first confronted with feral cats and dogs some 150 years ago. We tested whether and to what extent marine iguanas can adjust their behaviour and endocrine stress response to novel predation threats. Here, we show that a corticosterone stress response to experimental chasing is absent in naive animals, but is quickly restored with experience. Initially, low wariness also increases with experience, but remains an order of magnitude too low to allow successful escape from introduced predators. Our data suggest that the ability of marine iguanas to cope with predator introductions is limited by narrow reaction norms for behavioural wariness rather than by constraints in the underlying physiological stress system. In general, we predict that island endemics show flexible physiological stress responses but are restricted by narrow behavioural plasticity.


2009 ◽  
Vol 276 (1664) ◽  
pp. 2051-2056 ◽  
Author(s):  
Molly J. Dickens ◽  
David J. Delehanty ◽  
L. Michael Romero

Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar . We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1823-1834 ◽  
Author(s):  
Yvonne M. Ulrich-Lai ◽  
Michelle M. Ostrander ◽  
Ingrid M. Thomas ◽  
Benjamin A. Packard ◽  
Amy R. Furay ◽  
...  

Stress can promote palatable food intake, and consumption of palatable foods may dampen psychological and physiological responses to stress. Here we develop a rat model of daily limited sweetened drink intake to further examine the linkage between consumption of preferred foods and hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Adult male rats with free access to water were given additional twice-daily access to 4 ml sucrose (30%), saccharin (0.1%; a noncaloric sweetener), or water. After 14 d of training, rats readily learned to drink sucrose and saccharin solutions. Half the rats were then given chronic variable stress (CVS) for 14 d immediately after each drink exposure; the remaining rats (nonhandled controls) consumed their appropriate drinking solution at the same time. On the morning after CVS, responses to a novel restraint stress were assessed in all rats. Multiple indices of chronic stress adaptation were effectively altered by CVS. Sucrose consumption decreased the plasma corticosterone response to restraint stress in CVS rats and nonhandled controls; these reductions were less pronounced in rats drinking saccharin. Sucrose or saccharin consumption decreased CRH mRNA expression in the paraventricular nucleus of the hypothalamus. Moreover, sucrose attenuated restraint-induced c-fos mRNA expression in the basolateral amygdala, infralimbic cortex, and claustrum. These data suggest that limited consumption of sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses, and calories contribute but are not necessary for this effect. Collectively the results support the hypothesis that the intake of palatable substances represents an endogenous mechanism to dampen physiological stress responses.


2021 ◽  
Vol 22 (3) ◽  
pp. 1488
Author(s):  
John Benktander ◽  
Henrik Sundh ◽  
Kristina Sundell ◽  
Abarna V. M. Murugan ◽  
Vignesh Venkatakrishnan ◽  
...  

The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14–30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography–mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.


1999 ◽  
Vol 276 (6) ◽  
pp. E1136-E1145 ◽  
Author(s):  
Brian I. Labow ◽  
Wiley W. Souba ◽  
Steve F. Abcouwer

Skeletal muscle exports glutamine (Gln) and increases the expression of the enzyme glutamine synthetase (GS) in response to physiological stress. Acute stress or direct glucocorticoid administration raises muscle GS mRNA levels dramatically without a parallel increase in GS protein levels. In the lung, this discrepancy is caused by feedback destabilization of the GS protein by its product Gln. It was hypothesized that muscle GS protein levels increase during stress only when the intracellular Gln pool has been depleted. Adult male rats were injected with the glucocorticoid hormone dexamethasone (DEX) to mimic the acute stress response and with the GS inhibitor methionine sulfoximine (MSO) to deplete muscle Gln stores. DEX increased GS mRNA levels by 2.8-fold but increased GS protein levels by an average of only 40%. MSO diminished muscle GLN levels by 68% and caused GS protein levels to rise in accordance with GS mRNA. Chronic stress was mimicked using 6 days of MSO treatment, which produced anorexia, 23% loss of body weight, and 64% decrease in muscle Gln levels, as well as pronounced increases in both muscle GS mRNA (26-fold) and protein levels (35-fold) without elevation of plasma glucocorticoid levels. Calorie-restricted pair-fed animals exhibited lesser increases in muscle GS mRNA (8-fold) and protein levels (5-fold) without a decline in muscle Gln content. Thus regulation of GS expression in both acute and chronic stress involved both transcriptional and posttranscriptional mechanisms, perhaps affected by muscle Gln content.


2008 ◽  
Vol 68 (4) ◽  
pp. 572-578 ◽  
Author(s):  
R H Straub ◽  
G Pongratz ◽  
H Hirvonen ◽  
T Pohjolainen ◽  
M Mikkelsson ◽  
...  

Objective:Acute stress in patients with rheumatoid arthritis (RA) should stimulate a strong stress response. After cryotherapy, we expected to observe an increase of hormones of the adrenal gland and the sympathetic nervous system.Methods:A total of 55 patients with RA were recruited for whole-body cryotherapy at −110°C and −60°C, and local cold therapy between −20°C and −30°C for 7 days. We measured plasma levels of steroid hormones, neuropeptide Y (sympathetic marker), and interleukin (IL)6 daily before and after cryotherapy.Results:In both therapy groups with/without glucocorticoids (GC), hormone and IL6 levels at baseline and 5 h after cold stress did not change over 7 days of cryotherapy. In patients without GC, plasma levels of cortisol and androstenedione were highest after −110°C cold stress followed by −60°C or local cold stress. The opposite was found in patients under GC therapy, in whom, unexpectedly, −110°C cold stress elicited the smallest responses. In patients without GC, adrenal cortisol production increased relative to other adrenal steroids, and again the opposite was seen under GC therapy with a loss of cortisol and an increase of dehydroepiandrosterone. Importantly, there was no sympathetic stress response in both groups. Patients without GC and −110°C cold stress demonstrated higher plasma IL6 compared to the other treatment groups (not observed under GC), but they showed the best clinical response.Conclusions:We detected an inadequate stress response in patients with GC. It is further shown that the sympathetic stress response was inadequate in patients with/without GC. Paradoxically, plasma levels of IL6 increased under strong cold stress in patients without GC. These findings confirm dysfunctional stress axes in RA.


Sign in / Sign up

Export Citation Format

Share Document