scholarly journals Pumping Schedule Optimization in Acid Fracturing Treatment by Unified Fracture Design

Author(s):  
Rahman Lotfi ◽  
Mostafa Hosseini* ◽  
Davood Aftabi ◽  
Alireza Baghbanan ◽  
Guanshui Xu

Acid fracturing simulation is used widely to optimize carbonate reservoirs and improve acid fracturing treatment performance. In this study, a method was used to minimize the risk of the acid fracturing treatment. First, optimal fracture geometry parameters with UFD methods are calculated. After that, design components change as long as fracture geometry parameters reach their optimal values. The results showed a high flow rate needed to achieve optimal fracture geometry parameters with increasing acid volume. Sensitivity analysis was performed on controllable and reservoir parameters. It observed that a high flow rate should be applied for a low fluid viscosity to achieve the optimization goals. Straight acid reaches optimal conditions at a high flow rate and low volume. These conditions for retarded acids appear only at a low flow rate and high volume. The study of the acid concentration for gelled acid showed that as it increased, the flow rate and volume increased. Besides, for low permeability formation, a large fracture half-length and small fracture width are desirable. In this case, a higher flow rate will be required. The sensitivity analysis showed that the optimum flow rate and acid volume increase and decrease for the high Young's modulus. The effect of closure stress was also investigated and observed for a sample with high closure stress, low flow rate, and high acid volume are required.

Author(s):  
Takayuki Suzuki ◽  
Takashi Takemura

It is important in development of turbomachinery to predict their performance precisely. Especially the prediction of multistage pump performance is one of the challenging problems because internal phenomena which relate to the performance are complicated. Therefore, in this research, we verified accuracy of Computational Fluid Dynamics (CFD) in predicting performance of a five-stage high-pressure volute pump by comparing predicted values by CFD with measurement data. We tried two methods to predict the pump performance. One is a computation with a complete pump model which includes all five stages and leakage passages. This method can be expected to represent total internal flow phenomena. The other method is totaling up the performance data from separate computations of 1st–2nd stages and series stages. This method is simpler than the former and involves less computational cost. As a result, it was clarified that all the methods could predict pump head at the best efficiency point to some extent, even by steady computation. However, no prediction can predict positive gradient in Q-H curve which was observed in measurement at low flow rate. Except for the unsteady complete pump model computation, efficiency and shaft power could not be predicted precisely. In addition, at high flow rate, unsteady computation of the complete pump model shows the best agreement in head. In the complete pump model computation at high flow rate, the series stage next to the long crossover has larger head because of the influence of it. Therefore, the separated model has difficulty in representing series stages’ performance. In order to predict performance at high flow rate, unsteady computations also including properly the influence of the long crossover properly are necessary. In addition, to predict performance at low flow rate, unsteady computation is necessary.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 445d-445
Author(s):  
Qiyuan Pan ◽  
Bruno Quebedeaux

Low CO2 concentrations ([CO2]) frequently occur in dense crop canopy. To determine plant performance under sub-atmospheric [CO2], young `Gala' apple plants were phytotron-grown at 928 mmole m-2s-1 light intensity. Whole-plant photosynthesis and respiration under [CO2] between 0 and the ambient level (382 to 460 ml 1-1) were measured by monitoring [CO2] of the air entering and coming out of a 38-1 clear plexiglass gas exchange chamber at either 3.4 or 6.2 1 min-1. The chamber seals two plants of up to 77 cm height for long-term experiments. There was a linear relationship between [CO2] and net photosynthesis (Pn), with the R2 being as high as 0.99. The increase of Pn with increased [CO2] was 51% greater for the high air flow than for the low air flow. At the ambient CO2 level Pn at the high flow rate was 49% higher than that at the low flow rate. CO2 compensation points were 57.6 and 58.5 ml 1-1 at the high and low flow rates, respectively. The relationship between [CO2] and dark respiration was linear. Dark respiration decreased by 20% on average as the [CO2] increased from 0 to the ambient level, and it was 11% higher at the high flow rate than at the low flow rate. These results suggest that wind may act to reduce Pn depression in dense crop canopy by both reducing leaf resistance and atmospheric [CO2] gradient outside the boundary layer.


Author(s):  
Zijian Ai ◽  
Guoliang Qin ◽  
Jingxiang Lin ◽  
Xuefei Chen

A method for the speed matching of the second rotor (R2) with equal power for two rotors was proposed to avoid the overload of the second motor under low flow rate and the rapid decrease in pressure-rise and efficiency of R2 under high flow rate. The speed matching of two-stage rotors is proposed and analyzed to improve the stability margin of the counter-rotating fan (CRF). The fan performances during constant speed operating and during the speed matching operating are presented and discussed using experimental research. The results show that, the speed matching of R2 operating decreases the load of R2 under low flow rate and increases the pressure-rise and efficiency of R2 under high flow rate. Thus, the efficient working range and the blocking condition margin are increased. Reducing n1 and increasing n2 under low flow rate can regulate the position of unstable working line leftward without reducing the pressure-rise of the fan. Thus, the stability margin of the CRF is expanded.


2011 ◽  
Vol 674 ◽  
pp. 359-388 ◽  
Author(s):  
V. DOYEUX ◽  
T. PODGORSKI ◽  
S. PEPONAS ◽  
M. ISMAIL ◽  
G. COUPIER

The problem of the splitting of a suspension in bifurcating channels divided into two branches of non-equal flow rates is addressed. As has long been observed, in particular in blood flow studies, the volume fraction of particles generally increases in the high-flow-rate branch and decreases in the low-flow-rate branch. In the literature, this phenomenon is sometimes interpreted as the result of some attraction of the particles towards this high-flow-rate branch. In this paper, we focus on the existence of such an attraction through microfluidic experiments and two-dimensional simulations and show clearly that such an attraction does not occur but is, on the contrary, directed towards the low-flow-rate branch. Arguments for this attraction are given and a discussion on the sometimes misleading arguments found in the literature is given. Finally, the enrichment of particles in the high-flow-rate branch is shown to be mainly a consequence of the initial distribution in the inlet branch, which shows necessarily some depletion near the walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alojz Ihan ◽  
Stefan Grosek ◽  
David Stubljar

Background. The aim of our study was to evaluate the damaging impact of characteristics of the central venous catheters (CVCs) on red blood cells. Methods. CVCs from three different manufacturers were analyzed, including the presence of coating, tunnel geometry, length, lumen diameter, and number of lumens with two respective flow rates (33 mL/min and 500 mL/min). Blood cell damage was defined by analyzing microparticle (MP) and hematologic analysis. MPs were isolated by ultracentrifugation of erythrocyte concentrate and analyzed on a flow cytometer. Results. Characteristics of catheters were not associated with blood cell damage at a low flow rate but showed an effect with a high flow rate. CVCs with a polyhexanide methacrylate coating have caused statistically less blood cell damage than noncoated CVCs. The length of lumens, diameter, and geometry of the tunnel showed no differences in blood cell damage. Meanwhile, the number of lumens was predicted to have a greater effect on the erythrocyte damage, which was revealed with the formation of MPs and hematological parameters. CVCs with five lumens caused significantly less damage to the blood cells than CVCs with a single lumen. Moreover, a high flow rate of 500 mL/min caused less damage to the blood cells than a low rate of 33 mL/min. Conclusion. Properties of CVCs are an important factor for quality patient care, especially when transfusing blood with high flow rates, as we want to provide a patient with high-quality blood with as few damaged cells as possible.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Qian-Qian Wang ◽  
Bao-Hong Ping ◽  
Qing-Bo Xu ◽  
Wen Wang

This study investigates rheological effects of blood on steady flows in a nonplanar distal end-to-side anastomosis. The shear-thinning behavior of blood is depicted by a Carreau–Yasuda model and a modified power-law model. To explore effects of nonplanarity in vessel geometry, a curved bypass graft is considered that connects to the host artery with a 90deg out-of-plane curvature. Navier–Stokes equations are solved using a finite volume method. Velocity and wall shear stress (WSS) are compared between Newtonian and non-Newtonian fluids at different flow rates. At low flow rate, difference in axial velocity profiles between Newtonian and non-Newtonian fluids is significant and secondary flows are weaker for non-Newtonian fluids. At high flow rate, non-Newtonian fluids have bigger peak WSS and WSS gradient. The size of the flow recirculation zone near the toe is smaller for non-Newtonian fluids and the difference is significant at low flow rate. The nonplanar bypass graft introduces helical flow in the host vessel. Results from the study reveal that near the bed, heel, and toe of the anastomotic junction where intimal hyperplasia occurs preferentially, WSS gradients are all very big. At high flow rates, WSS gradients are elevated by the non-Newtonian effect of blood but they are reduced at low flow rates. At these locations, blood rheology not only affects the WSS and its gradient but also secondary flow patterns and the size of flow recirculation near the toe. This study reemphasizes that the rheological property of blood is a key factor in studying hemodynamic effects on vascular diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hosu Kim ◽  
Tae Kyong Kim ◽  
Sukha Yoo ◽  
Jin-Tae Kim

Abstract Background A fluid warmer can prevent hypothermia during the perioperative period. This study evaluated the heating capabilities of Hotline and Barkey S-line under different flow rates and initial fluid temperatures, as well as after the extension line installation. Methods We measured the temperature of a 0.9% sodium chloride solution at the fluid warmer outlet (TProx) and the extension line end (TDistal) with three different initial fluid temperatures (room, warm, and cold) and two flow rates (250 ml/hr and 100 mL/hr). Results At a 250 ml/hr flow rate, the TProx and TDistal values were observed to be higher in Hotline than in S-line when using room-temperature or cold fluid. Administering of the warm fluid at the same flow rate significantly increased the TProx and TDistal values in S-line more than the cold and room-temperature fluids. At flow rates of 100 ml/hr, TDistal values were significantly lower than TProx values in both devices regardless of the initial fluid temperature. Conclusions Hotline outperformed S-line for warming fluids at a high flow rate with cold or room-temperature fluids. Administering warm fluid in S-line prevented a decrease in the fluid temperature at a high flow rate. However, at a low flow rate, the fluid temperature significantly decreased in both devices after passing through an extension line.


Author(s):  
Taehyun Park ◽  
Daniel Sangwon Park ◽  
Michael C. Murphy

Circulating tumor cells (CTCs) may become a new foundation for early stage cancer diagnosis requiring minimal patient effort [1]. This approach can overcome the limitations of current diagnostic technologies, including computer-aided tomography (CT), magnetic resonance imaging (MRI), X-ray mammography, and ultrasound (UR) which can detect only highly calcified tumors at relatively high cost. Several studies have demonstrated CTC capture using microfluidic devices to identify the presence of human breast cancer, and the CellSearch™ immunomagnetic system (Johnson & Johnson, New Brunswick, NJ) is approved by the Food and Drug Administration (FDA) for monitoring post-treatment therapy, but all of the systems reported have either a long diagnosis time or unacceptable capture rates [2, 3]. CTCs in human peripheral blood are very rare events, typically 1 ∼ 2 CTCs in 1 mL of circulating blood. This low concentration of CTCs requires a large sample volume (∼7.5 mL) to ensure detection. However, current affinity-based microfluidic devices for cell capture usually operate at very low flow rates to increase the capture rate. Therefore, developing high flow rate microfluidic devices for CTC capture is essential and challenging. A new concept of high flow rate device is introduced, simulated, and tested at high flow rates.


Sign in / Sign up

Export Citation Format

Share Document