scholarly journals Light Absorption Enhancement and Laser-Induced Damage Ability Improvement of AA 6061 with Non-porous Alumina /CdSe@Al2O3/SiO2 Functional Gradient Films

Author(s):  
Jiaheng Yin ◽  
Lihua Lu ◽  
Yaowen Cui ◽  
Yongzhi Cao ◽  
Yunlong Du

Numerical calculations of ultraviolet to near-infrared absorption spectra by cadmium selenide quantum dots (CdSe QDs) doped in anodic aluminum oxide pores were performed using a finite-difference time-domain model. The height, diameter, and periodic spacing of the pores were optimized. Light absorption by the dots was enhanced by increasing the height and decreasing the diameter of the pores. When the height was less than 1 μm, visible light absorption was enhanced as the spacing was reduced from 400 nm to 100 nm. No enhancement was observed for heights greater than 6 μm. Finally, the optical mode coupling of the aluminum oxide and the quantum dots was enhanced by decreasing the pore diameter and periodic spacing, and increasing the height. Laser ablation verified light absorption enhancement by the CdSe QDs. The experiment verified the improvement of the laser-induced damage ability with wavelength of 355-nm after aluminum alloy 6061 coated with functional films, which was fabricated based on numerical calculations.

2019 ◽  
Vol 39 (1) ◽  
pp. 0131001
Author(s):  
黎志文 Li Zhiwen ◽  
陆华 Lu Hua ◽  
李扬武 Li Yangwu ◽  
焦晗 Jiao Han ◽  
赵建林 Zhao Jianlin

2019 ◽  
Vol 7 (17) ◽  
pp. 10225-10230 ◽  
Author(s):  
Ali Imran Channa ◽  
Xin Tong ◽  
Jing-Yin Xu ◽  
Yongchen Liu ◽  
Changmeng Wang ◽  
...  

Near-infrared-emitting CuGaS2/CdS QDs with enhanced visible light absorption were developed to achieve high efficiency photoelectrochemical cells.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Bo Liu ◽  
Wenjing Yu ◽  
Zhendong Yan ◽  
Pinggen Cai ◽  
Fan Gao ◽  
...  

In this study, we investigate a physical mechanism to improve the light absorption efficiency of graphene monolayer from the universal value of 2.3% to about 30% in the visible and near-infrared wavelength range. The physical mechanism is based on the diffraction coupling of surface plasmon polariton resonances in the periodic array of metal nanoparticles. Through the physical mechanism, the electric fields on the surface of graphene monolayer are considerably enhanced. Therefore, the light absorption efficiency of graphene monolayer is greatly improved. To further confirm the physical mechanism, we use an interaction model of double oscillators to explain the positions of the absorption peaks for different array periods. Furthermore, we discuss in detail the emerging conditions of the diffraction coupling of surface plasmon polariton resonances. The results will be beneficial for the design of graphene-based photoelectric devices.


Photonics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 78
Author(s):  
Majid Ghandchi ◽  
Ghafar Darvish ◽  
Mohammad Kazem Moravvej-Farshi

Due to their bandgap engineering capabilities for optoelectronics applications, the study of nano-graphene has been a topic of interest to researchers in recent years. Using a first-principles study based on density functional theory (DFT) and thermal DFT, we investigated the electronic structures and optical properties of bilayer graphene quantum dots (GQDs). The dielectric tensors, absorption spectra, and the refractive indexes of the bilayer GQDs were obtained for both in-plane and out-of-plane polarization. In addition, we calculated the absorption spectra via time-dependent DFT (TD-DFT) in the linear response regime. The TDDFT results show that a blue shift occurs in the absorption spectrum, which is consistent with the experimental results. In this investigation, we consider triangular and hexagonal GQDs of various sizes with zigzag and armchair edges. Our simulations show that unlike monolayer GQDs, for which light absorption for out-of-plane polarization occurs in the ultraviolet wavelength range of 85–250 nm, the out-of-plane polarization light absorption peaks in the bilayer GQDs appear in the near-infrared range of 500–1600 nm, similar to those in bilayer graphene sheets. The out-of-plane polarization light absorption peaks in the near-infrared range make bilayer GQDs suitable for integrated optics and optical communication applications.


2013 ◽  
Vol 102 (19) ◽  
pp. 193105 ◽  
Author(s):  
S. Mirabella ◽  
S. Cosentino ◽  
M. Failla ◽  
M. Miritello ◽  
G. Nicotra ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Yanling Hu ◽  
Chun Deng ◽  
Yu He ◽  
Yili Ge ◽  
Gongwu Song

2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


2016 ◽  
Vol E99.C (3) ◽  
pp. 381-384 ◽  
Author(s):  
Takuma YASUDA ◽  
Nobuhiko OZAKI ◽  
Hiroshi SHIBATA ◽  
Shunsuke OHKOUCHI ◽  
Naoki IKEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document