Proliferative diseases of the uterus: clinical, immunological, and molecular aspects

2020 ◽  
Vol 19 (5) ◽  
pp. 13-21
Author(s):  
S.V. Shramko ◽  
◽  
L.F. Gulyaeva ◽  
V.N. Zorina ◽  
T.V. Tretyakova ◽  
...  

Objective. To perform comparative analysis of clinical data, serum levels of acute-phase proteins, cytokines, steroid hormones, and expression of genes encoding sex hormone receptors in tissues of patients with proliferative diseases of the uterus. Patients and methods. We analyzed clinical data of 349 patients with various proliferative diseases of the uterus. We also evaluated their serum levels of α2-macroglobulin, pregnancy-associated α2-glycoprotein, their immunocomplexes with IgG, lactoferrin, VEGF, IL-6, TNFa, IL-8, and sex hormones. Uterine tissue samples were tested for the expression of genes encoding estrogen receptors α and β (ЕRα, ЕRβ) and progesterone receptors (PGR). Data analysis was performed using the statistical packages of SAS 9.4, STATISTICA12, and IBM-SPSS Statistics 22. Results. The changes in the level of acute-phase proteins indicated inflammation. In isolated uterine fibroids, expression of genes encoding progesterone receptors prevailed, whereas in isolated adenomyosis, expression of genes encoding estrogen receptors prevailed. Patients with both uterine fibroids and adenomyosis demonstrated similar levels of expression of genes encoding sex steroid hormone receptors. Tissues of uterine leiomyosarcoma were characterized by downregulated expression of genes encoding sex steroid hormone receptors. Conclusion. Upregulation of genes encoding progesterone receptors in isolated uterine fibroids confirms that therapy with progesterone receptor blockers is appropriate in this case. The predominance of expression of genes encoding estrogen receptors in isolated adenomyosis indicates local hyperestrogenism, justifying the use of progestogens and antiestrogens. Equal expression of genes encoding estrogen and progesterone receptors in patients with combined disease, as wells as high frequency of inflammatory changes in tissues and increased serum levels of inflammatory markers, proves the need for antiinflammatory therapy. Key words: adenomyosis, inflammation, steroid receptor genes, leiomyosarcoma, uterine fibroids, gene expression

2000 ◽  
Vol 124 (2) ◽  
pp. 276-280 ◽  
Author(s):  
Mojgan Devouassoux-Shisheboran ◽  
David P. Schammel ◽  
Yan-Gao Man ◽  
Fattaneh A. Tavassoli

Abstract Objective.—To predict if antiestrogenic agents are useful in the treatment of breast fibromatoses, we undertook an immunohistochemical study of sex steroid hormone receptors (estrogen receptor, progesterone receptor, and androgen receptor) and protein pS2 in 33 cases. Methods.—The morphologic and immunohistochemical findings were correlated to patient menstrual status, which was categorized as childbearing age (n = 15), perimenopausal (n = 8), and postmenopausal (n = 10). Results.—Fibromatoses in women of childbearing age were more cellular, more mitotically active, and displayed a larger proportion of cells with mild atypia than those in perimenopausal and postmenopausal women. The hormonal status of these 3 groups does not explain the morphologic variations observed in these groups, inasmuch as no immunostaining for any of the hormone receptors was detected in the tumors. Conclusions.—The absence of estrogen receptor and pS2 in breast fibromatoses suggests that antiestrogenic agents are unlikely to be beneficial in the management of these tumors. Assessment of the hormone receptor profile is a useful adjunct in the diagnosis of spindle cell lesions of the breast. Although most spindle cell carcinomas as well as fibromatoses of the breast do not express estrogen or progesterone receptors, the absence of androgen receptor reactivity would favor a diagnosis of fibromatosis over that of myofibroblastoma.


2009 ◽  
Vol 89 (4) ◽  
pp. 467-473 ◽  
Author(s):  
R Singh ◽  
T Pretheeban ◽  
R Rajamahendran

The local modulatory role of gonadotropin releasing hormone (GnRH), gonadotropin releasing hormone receptor (GnRH-R) system in regulating steroid hormone receptors at the endometrial level is still not known. Estrogen and progesterone maintain uterine functions by acting through their corresponding receptors; estrogen receptors (ERα and ERβ) and progesterone receptors (PR). We recently demonstrated GnRH-R in bovine endometrium and find the co-existence of GnRH and steroid hormone receptors in endometrium as interesting. Our objective was to determine the effect of a GnRH agonist (buserelin), on the expression of ERα, ERβ, and PR messenger RNA (mRNA) in bovine endometrium. Reproductive tracts were collected from slaughtered cows at a local abattoir, and endometrial explants were treated with buserelin (0, 200, 500, 1000 ng mL-1 respectively), GnRH antagonist-antide (500 ng mL-1) and antide + buserelin (500+200 ng mL-1) for 6 h and stored at -80°C for RNA extraction. Two micrograms of total RNA was subjected to reverse transcription polymerase chain reaction, PCR products electrophoresed (2% agrose gel); visualized and statistically analyzed. The results showed that buserelin (200 ng mL-1) increased the expression of ERα in the luteal phase endometrium. In addition, the expression of endometrial ERα was greater during the follicular than luteal phase. This up regulation of ERα mRNA in luteal phase endometrium suggests that GnRH administration may influence pregnancy in bovines. Key words: GnRH, bovine, endometrium, estrogen receptors, progesterone receptors


2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14001 ◽  
Author(s):  
Yingfeng Zheng ◽  
Leigh C. Murphy

Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.


2007 ◽  
Vol 86 (11) ◽  
pp. 1377-1384 ◽  
Author(s):  
Marie Westergren Söderberg ◽  
Bengt Johansson ◽  
Britt Masironi ◽  
Birgitta Byström ◽  
Christian Falconer ◽  
...  

2002 ◽  
Vol 14 (4) ◽  
pp. 241 ◽  
Author(s):  
Hilde Vermeirsch ◽  
Wim Van Den Broeck ◽  
Mark Coryn ◽  
Paul Simoens

The aim of this immunohistochemical study was to describe the cellular distribution of the estrogen receptor-α (ERα), progesterone receptor (PR) and androgen receptor (AR) in canine uterine tubes. Samples of uterine tubes were taken from dogs in different stages of the estrous cycle, and dogs that were pregnant or had just delivered. Nuclear staining for sex steroid hormone receptors was observed in the surface epithelium, stromal cells and smooth muscle cells of the muscular layer. Only slight differences in staining pattern were observed between the ampulla and fimbriae. The staining for ERα and PR showed changes throughout the estrous cycle. Some of these changes were related to changing concentrations of sex steroid hormones. High staining scores for ERα and PR were found during proestrus and low scores during early metestrus. The staining for AR showed only minor cyclic changes. However, during proestrus and estrus, cytoplasmic staining for AR was observed in differentiated secretory epithelial cells, when nuclear staining in these cells was nearly absent. For the three hormone receptors, stromal cells generally stained with a higher intensity than epithelial cells. It is likely that many steroid hormone actions on the epithelium are mediated through stromal cells. During pregnancy, rather high staining scores were found for ERα and AR in the uterine tube. This is in contrast to observations in the canine pregnant uterus.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ko-Ting Lu ◽  
Eric T Weatherford ◽  
Pimonrat Ketsawatsomkron ◽  
Justin L Grobe ◽  
Curt D Sigmund

Expression of the renin gene is required to maintain normal morphological and physiological identity of renal juxtaglomerular (JG) cells, yet the mechanisms regulating renin gene transcription remain elusive. We re-examined data from Brunskill et. al (JASN 22:2213, 2011), investigating genome-wide gene expression in JG and other renal cell types. Based on our previous data implicating nuclear receptors (RAR, RXR, VDR, PPARG, Nr2f2 and Nr2f6) in the regulation of mouse and human renin gene expression, we focused our analysis on the expression of genes encoding the 48 nuclear hormone receptors and their co-regulation with renin. Several nuclear receptors have an expression pattern emulating that of renin, that is, they were similarly enriched in JG cells but not in other cell types. These include Esr1, Nr1h4, Ppara, VDR, Nr1i2, Ppard, Hnf4g, Nr1h3, Thrb, Hnf4a, Esrrg, Nr4a3, Nr3c2, and Ar. We tested the hypothesis that a nuclear receptor that is co-regulated with renin may participate in renin gene regulation. To accomplish this, endogenous renin expression was evaluated in renin-expressing As4.1 cells after siRNA-mediated knock down of selected nuclear receptors. Each experiment included a negative control siRNA duplex (NC) that does not target any known genes. By way of example, siRNA-mediated inhibition of estrogen receptor alpha (Esr1) by 70-80% resulted in a 2-fold decrease in renin mRNA (fold change ± SEM: siEsr1: 0.4±0.2, p<0.001 vs NC). Similar results were obtained with a different siRNA targeting Esr1. Interestingly, loss of Esr1 also caused up-regulation of vitamin D receptor (VDR, 2.8±0.7 fold, p<0.001 vs NC) and Nr2f6 (2.0±0.2 fold, p<0.05 vs NC), both of which are known to be negative regulators of renin. Similarly, both renin (0.1±0.02, p<0.001 vs untreated) and Esr1 (0.3±0.1, p<0.05 vs untreated) mRNA were reduced in the kidney from mice treated with deoxycorticosterone acetate (50mg) and receiving 0.15 M NaCl in drinking water for 21 days (DOCA-salt). These data suggest Esr1 may regulate renin expression. Studies are in progress to assess if Esr1 stimulates renin expression on its own or acts by affecting the level of other nuclear receptors; and to determine if other co-regulated nuclear receptors also regulate expression of the renin gene.


Sign in / Sign up

Export Citation Format

Share Document