scholarly journals Evaluasi Pemisahan Alkilbenzena Menggunakan Kolom Monolith Berbasis Polimer Organik secara Kromatografi Cair Kinerja Tinggi

2018 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Septi Fajar Raeni ◽  
Unsania Haresmawati ◽  
Ani Mulyasuryani ◽  
Akhmad Sabarudin

<p>Kolom monolith berbasis polimer organik poli-(lauril metakrilat-co-etilen dimetakrilat) disintesis secara in situ kopolimerisasi dalam kolom <em>silicosteel </em>dengan ukuran panjang 10 cm dan diameter dalam 1,02 mm. Kolom monolith ini digunakan untuk pemisahan alkilbenzena secara Kromatografi Cair Kinerja Tinggi (KCKT) fasa terbalik. Pada penelitian ini, efisiensi pemisahan ditingkatkan dengan menggunakan kolom monolith poli-(LMA-co-EDMA) untuk memisahkan senyawa alkilbenzena melalui tiga parameter, yakni temperatur kolom, pemisahan secara isokratik dan pemisahan secara gradien. Temperatur kolom yang digunakan berkisar antara 27–50 °C. Hasil yang diperoleh menunjukkan bahwa temperatur optimum untuk pemisahan alkilbenzena secara isokratik yaitu 27 °C yang setara dengan temperatur ruang dengan fasa gerak asetonitril-air (50:50 w/w). Pemisahan alkilbenzena yang lebih efisien ditunjukkan dari penggunaan mode gradien ditandai dengan nilai <em>peak capacity</em>, faktor retensi dan jumlah plat teoritis yang lebih baik. Fasa gerak yang digunakan pada pemisahan secara gradien yaitu pelarut A yang terdiri atas asetonitril-air (40:60 w/w) dan pelarut B yang terdiri atas asetonitril-air (60:40 w/w)  dengan waktu gradien 20–40 menit 0–100% B. Perubahan waktu gradien berpengaruh terhadap faktor retensi dan <em>peak capacity</em>.</p><p><strong>Evaluation of Organic Polymer-Based Monolithic Column by High Performance Liquid Chromatography for The Separation of Alkyl Benzenes</strong><strong>. </strong>Organic polymer-based monolithic column of poly(lauryl methacrylate-co-ethylene dimethacrylate) has been prepared by in- situ copolymerization inside of <em>silicosteel</em> column with the size of 100 mm long x 1.02 mm i.d. This kind of monolith column used for separation of alkylbenzenes using reversed-phase high performance liquid chromatography (HPLC). The efficiency separation on this research is improved by using poly-(LMA-co-EDMA) monolithic column for separation of alkyl benzene compounds using three strategies involving optimization column temperature, isocratic elution mode, and gradient elution mode. The applied column temperatures were varied in the range of 27–50 °C. It was found that room temperature in isocratic mode with the mobile phase of acetonitrile-water (50:50 w/w) showed the excellent efficiency indicated by baseline-resolved of each peak of alkyl benzenes. The resulted separation efficiency by employing gradient elution mode exceeded its counterpart (isocratic mode), which is indicated by better in peak capacity, retention factor, and number theoritical plate. Two different mobile phases for gradient elution mode, composed of A that contain of acetonitrile-water (40/60 w/w) and B that contain of acetonitrile-water (60/40 w/w) were utilized in the range of 20-40 min for 0-100% B. It was found that increasing gradient time strongly affect to the retention factor and peak capacity.<strong></strong></p>

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4505
Author(s):  
Jiahui Sun ◽  
Chunli Gan ◽  
Jing Huang ◽  
Zhenyue Wang ◽  
Chengcui Wu ◽  
...  

A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L.


2018 ◽  
Vol 773 ◽  
pp. 405-409
Author(s):  
Bok Seong Kim ◽  
Young Sug Kim ◽  
Sung Won Kang ◽  
Dae Min Oh ◽  
Sol Kim ◽  
...  

This study aims to utilize Prussian Blue (PB) to develop a high performance adsorbent for removing radioactive cesium from radioactive accidents. Prussian blue (PB) can adsorb selectively to cesium (Cs), which is high in adsorption efficiency, but has a disadvantage that it is difficult to recover after adsorption, so there is a high concern about secondary environmental pollution. Therefore, this study modified the surface of powder activated carbon (PAC) particles by using covalent organic polymer (COP) for stable immobilization of PB, and developed a PB-impregnated adsorbent (COP-PAC-PB). Synthesis of COP-PAC-PB was performed by sequentially reacting with iron (III) chloride and potassium ferrocyanide solution to synthesize PB in COP pore (In-situ). The maximum adsorption of COP-PAC-PB on cesium was 19 mg / g and the removal efficiency for radioactivity cesium (Cs-137, 60 Bq / kg) was 97.3%. In addition, PB was synthesized by the same method as that of COP-PAC-PB, which is a modification product of the unmodified group (PAC, Ox-PAC), and UV-vis analysis was performed to compare PB desorption characteristics after washing Respectively. In the unmodified group (PAC-PB, Ox-PAC-PB), a large amount of PB was desorbed when washed once to 6 times. In the case of COP-PAC-PB, it was not. As a result, the surface of the PAC particles was effectively modified using COP, and the adsorbent with Prussian blue stably immobilized was developed.


Medicina ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 75-88
Author(s):  
O. N. Dvorskaya ◽  
◽  
N. N. Nozhkina ◽  

A technique has been developed based on reversed-phase high-performance liquid chromatography with diode-matrix detection for the joint determination of succinic acid and cetylpyridinium chloride in complex action medicinal films. Efficient chromatographic separation of active drug components was achieved in a gradient elution mode on a Luna C18 (2) 100A column (4.6 × 250 mm, 5 µm) using a mobile phase consisting of a 0.1% solution of phosphoric acid and acetonitrile. The detection wavelength was 210 nm for both compounds. The developed method is validated in terms of specificity, linearity, precision, accuracy and can be used to determine the authenticity and quantitative content of succinic acid and cetylpyridinium chloride in the joint presence in assessing the quality of medicinal films.


2019 ◽  
Vol 25 ◽  
pp. 100873 ◽  
Author(s):  
Lirong Xu ◽  
Ruiying Liu ◽  
Fang Wang ◽  
Xu Ge ◽  
Xianghui Zhang ◽  
...  

2019 ◽  
Vol 37 (No. 2) ◽  
pp. 112-119 ◽  
Author(s):  
Jianyong Zhang ◽  
Hongchun Cui ◽  
Heyuan Jiang ◽  
Lei Fang ◽  
Weiwei Wang ◽  
...  

The quantitative determination of four theaflavin monomers by a rapid reversed-phase high performance liquid chromatographic method was developed. A new RP-18 end-capped column with particle size 2 µm and equilibrated to 35°C in a Shimadzu temperature controller module was used. Four theaflavin monomers were successfully separated in 8 min by the new strategy, comparing to 20–85 min by HPLC in the peer literature reports. Linear gradient elution: from 92% mobile phase A (v) to 76% mobile phase A (v) during early 3 min and then 92% mobile phase A (v) till 8 min at elution flow rate 1.5 ml/min. The limits of detection and quantification were in the range of 0.1–0.3 and 0.4–1.1 mg/l. Satisfactory recoveries of theaflavin, theaflavin-3-gallate, theaflavin-3’-gallate and theaflavin-3,3’-gallate were 97.5–102.6, 98.6–102.4, 99.6–105.4, and 95.5–105.4%, respectively. The new method was applied to quantitative analysis theaflavins of tea samples, including 10 black teas, 5 oolong teas, and 5 green teas. This method is suitable for the rapid, accurate and inexpensive quantitative analysis of theaflavins under the basic detection conditions of HPLC.


Author(s):  
Stevin Carolius Angga ◽  
Dias Septiana ◽  
Suci Amalia ◽  
Warsito Warsito ◽  
Elvina Dhiaul Iftitah ◽  
...  

An enantiomer molecule consisted of the chiral atom has different structure conformations, which exhibit different activities as well. Yet, its separation considerably difficult since ordinary separation could not separate both molecules. One of the popular enantioseparations which are often used was using organic polymer monolithic column modified by ethylenediamine-β-cyclodextrin (EDA-β-CD) as the enantioseparations site. The aim of this research was to produce chiral stationary phase column for enantioseparations of (±)-citronellal. It was conducted by preparing monolithic column using monomer glycidyl methacrylate (GMA), trimethylolpropane trimethacrylate (TMPTMA) as crosslinker, 1-propanol, 1,4-butanediol, and water as pore-forming agents (porogens) in the presence of α,α'-azoisobutyronitrile (AIBN) as radical initiator inside polyetheretherketone (PEEK) tubing. It was then modified with EDA-β-CD synthesized from β-CD. Finally, it was installed as a high-performance liquid chromatography column. The result shows the produced chiral stationary phase column could separate (±)-citronellal at a retention time of 44.76 and 45.71 min.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


Author(s):  
Klimenko Lina Yu ◽  
Shkarlat Galyna L ◽  
Shovkova Zoia V ◽  
Yaremenko Vitaliy D ◽  
Shpychak Oleg S

Metronidazole is the most popular representative of antiprotozoal medicines from the group of 5-nitroimidazoles. Metronidazole blocks the enzymes of alcohol dehydrogenase and acetaldehyde dehydrogenase, therefore when its joint taking with alcohol it is observed the strong intoxication syndrome and fatal poisonings too. Therefore metronidazole can be a potential object of chemical toxicological investigations. The purpose of our paper is to develop HPLC/UV-procedure of metronidazole quantification with application of the system of HPLC-analyzer MiLiChrome® A-0230 implemented in practice of forensic medical laboratories in Russia and Ukraine and carry out step-by-step validation of the developed procedure. Chromatographic conditions: Eluent A (0.2 M LiClO4 – 0.005 M HClO4) and Eluent B (acetonitrile) wereused as the mobile phase components; HPLC microcolumn Ø2×75 mm and ProntoSIL 120-5-C18 AQ, 5 μm were used as an analytical column; temperature was 40°С; flow rate was 100 μl/min; gradient elution mode was from 5% to 100% Eluent B for 40 min, then 100% Eluent B for 3 min; detection was performed at 277 nm. Retention time for metronidazole is 5.95 min. Since metronidazole is easy soluble and stable enough in the solutions of diluted alkalis 0.001 M sodium hydroxide solution has been proposed for preparation of the solutions in developing HPLC/UV-procedure of metronidazole quantification. Validation of the procedure has been carried out in the variants of the method of calibration curve and method of standard by such parameters as in process stability, linearity/calibration model, accuracy and precision within 3 different analytical runs using different batches of reagents and different glassware; experiments have been performed by three different analysts. New procedure of metronidazole quantitative determination by the method of HPLC/UV has been developed. Its validation has been carried out and acceptability for application has been shown.


Sign in / Sign up

Export Citation Format

Share Document