scholarly journals Distribution of Taraxacum microspecies along soil property gradients in salt and brackish meadows on the Polish Baltic coast

2019 ◽  
Vol 78 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Beata Bosiacka ◽  
Helena Więcław ◽  
Paweł Marciniuk ◽  
Marek Podlasiński

Abstract The vegetation of protected salt meadows along the Baltic coast is fairly well known; however, dandelions have been so far treated as a collective species. The aim of our study was to examine the microspecies diversity of the genus Taraxacum in Polish salt and brackish coastal meadows and to analyse soil property preferences of the dandelion microspecies identified. In addition, we analysed the relations between soil properties and vegetation patterns in dandelion-supporting coastal meadows (by canonical correspondence analysis). The salt and brackish meadows along the Polish Baltic coast we visited were found to support a total of 27 dandelion microspecies representing 5 sections. Analysis of vegetation patterns showed all the soil parameters (C:N ratio, organic matter content, pH, concentration of Mg, P, K, electrolytic conductivity of the saturated soil extract ECe) to explain 32.07% of the total variance in the species data. The maximum abundance of most dandelion microspecies was associated with the highest soil fertility, moderate pH values and organic matter content, and with the lowest magnesium content and soil salinity. The exceptions were T. latissimum, T. stenoglossum, T. pulchrifolium and T. lucidum the occur-rence of which was related to the lowest soil fertility and the highest salinity. In addition, several microspecies (T. leptodon, T. gentile, T. haematicum, T. fusciflorum and T. balticum) were observed at moderate C:N ratios and ECe. Four other microspecies (T. infestum, T. cordatum, T. hamatum, T. sertatum) occurred at the lowest pH and organic matter content. The information obtained increases the still insufficient body of knowledge on ecological spectra of individual dandelion microspecies, hence their potential indicator properties.

2011 ◽  
Vol 3 (2) ◽  
pp. 123-128 ◽  
Author(s):  
Clement O. OGUNKUNLE ◽  
Olusegun O. AWOTOYE

Tree cropping has been known to bring about changes in edaphic component among other components of the ecosystem through their interactions with the soil and soil faunas. Premised on this, this study assessed the effects of sole cropping of teak and intercropping of cocoa and kola on the soil fertility status. The study was carried out using stratified-randomed sampling technique for the study plots in all the sampling sites. Three sampling sites consisting of four (4)-4oo m2 sampling plots each were established in which vegetation and some soil parameters were assessed. Results analysis showed that the synergistic interaction of leaves decomposition of cocoa and kola improved the organic matter content of the soil under the cocoa/kola site. Considerable improvement in soil fertility was enjoyed in the cocoa/kola site due to the large girth sizes and basal area of trees present in the cocoa/kola site while soil under the sole cropping of teak was impoverished. The degradation effects was due to the high rate of nutrient uptake of the teak, organic matter content was high in the forest site (9.12%) and cocoa/kola site (7.34) while the least was in the teak site (3.04%). A very strong correlation existed between organic matter content and some vegetation parameters.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


1969 ◽  
Vol 90 (3-4) ◽  
pp. 145-157 ◽  
Author(s):  
David Sotomayor-Ramírez ◽  
Gustavo A. Martínez

There is a need to quantitatively assess the soil fertility status of tropical soils. Descriptive summaries help describe the effectiveness of liming programs, nutritional limitation in soils and the relative risk of off-field nutrient transport. A database of 1,168 soil test results collected from 1989 to 1999 from nearly 400 cultivated farms in Puerto Rico was used. Samples were analyzed for pH, organic matter (Walkley-Black method), extractable phosphorus (P) (Olsen and Bray 1), and exchangeable bases (NH4Oac method) by a commercial laboratory. Thirty-six percent of the samples had acidity problems (pH <5.5). Twenty-three percent of the samples had low organic matter content (<20 g/kg), and 16% had high category (>40 g/kg) values. Fifty-three and 56% of the samples showed a need to fertilize with magnesium (Mg) and potassium (K), respectively, because they had values below the suggested critical levels of 2.5 cmolc/kg for soil exchangeable Mg and of 0.4 cmolc/kg for K. On the basis of current soil fertility criteria, P fertilization would be required in 69% of the samples with pH less than 7.3, but only in 28% of the samples with pH greater than or equal to 7.3. Although the soils grouped with pH >7.3 had a greater proportion of samples in the "extremely high" soil test P category, the potential environmental impact may be lessened because the climatic and topographic conditions where these soils occur favor less runoff. Follow-up studies are needed to assess the spatial variability and the temporal dynamics of the nutritional status of soils of Puerto Rico. 


Parasitology ◽  
2017 ◽  
Vol 144 (14) ◽  
pp. 1956-1963 ◽  
Author(s):  
APOSTOLOS KAPRANAS ◽  
ABIGAIL M. D. MAHER ◽  
CHRISTINE T. GRIFFIN

SUMMARYIn laboratory experiments, we investigated how media with varying ratio of peat:sand and two levels of compaction influence dispersal success of entomopathogenic nematode (EPN) species with different foraging strategies: Steinernema carpocapsae (ambusher), Heterorhabditis downesi (cruiser) and Steinernema feltiae (intermediate). Success was measured by the numbers of nematodes moving through a 4 cm column and invading a wax moth larva. We found that both compaction and increasing peat content generally decreased EPN infective juvenile (IJ) success for all three species. Of the three species, H. downesi was the least affected by peat content, and S. carpocapsae was the most adversely influenced by compaction. In addition, sex ratios of the invading IJs of the two Steinernema species were differentially influenced by peat content, and in the case of S. feltiae, sex ratio was also affected by compaction. This indicates that dispersal of male and female IJs is differentially affected by soil parameters and that this differentiation is species-specific. In conclusion, our study shows that organic matter: sand ratio and soil compaction have a marked influence on EPN foraging behaviour with implications for harnessing them as biological pest control agents.


2015 ◽  
Vol 30 (1) ◽  
pp. 20
Author(s):  
Deni Prasetiyo ◽  
Djoko Purnomo ◽  
Supriyadi Supriyadi

<p><em>Soybean is one of the most important food commodities in Indonesia and also it has high value. The needs continue to increase each year, but not offset by increased production become an issue that must be addressed. One attempt to increase soybean production is through the cultivation in agroforestry systems through improving the quality of soil fertility. This research aims to study the effect of various doses of </em><em>litter teak</em><em> and NPK fertilizer on chemical soil fertility and the potential of soybeans yield in agroforestry systems based teak crops. Experiments using a Randomized Complete Block Design </em><em>(RCBD) </em><em>with two factors, namely litter</em><em> teak</em><em> doses (0 ton ha<sup>-1</sup>, 2.500 ton ha<sup>-1</sup>, 5.000 ton ha<sup>-1</sup>, 7.500 ton ha<sup>-1</sup>) and dose</em><em>s</em><em> of NPK fertilizer (60-60-60 and 60-120-60) on Grobogan soybean varieties. The variables measured were pH, organic matter content, N-total soil, cation exchange capacity (CEC), plant tissue of N, P-total soil, and component production. Data analysis using analysis of variance F-test based on the level of 5% and significantly different variables followed by </em><em>Tukey’s method </em><em>level of 5%</em><em>. The results showed that combination treatment with various doses of teak litter NPK fertilizers can increase total nitrogen content of the soil with the highest yield of 1.69% on S1D2 treatment, but to organic matter, CEC, pH, and total soil P not significant effect. Component of soybean varieties of the highest Grobogan of 0.83 tons ha-1 in the treatment S1D1. The result was still below the average of the national soybean production.</em></p>


1969 ◽  
Vol 39 (2) ◽  
pp. 65-76
Author(s):  
Fernando Abruña-Rodríguez ◽  
José Vicente-Chandler

The exchange capacity of the organic matter in typical soils of Puerto Rico was evaluated from: (1) The variation in the exchange capacity of soil samples following destruction of the organic matter, (2) titration curves of extracted organic matter, (3) and the correlations between exchange capacity and organic-matter content of soil samples. The first method was the most practical and gave fairly accurate results. The second method gave results which were in all cases too high. The third method, though probably the most accurate, is impractical. Results obtained with the first and third methods were similar. The exchange capacity of the organic matter varied rather widely, but was generally between 100 and 150 m.e. per 100 gm. On the average it accounted for about 25 percent of the total exchange capacity of the soils studied. The organic matter removed by flotation had the highest exchange capacity and the more readily oxidizable portions generally appeared to be the most active. This suggests the importance of conserving the more readily lost portions of the soil organic matter. A considerable portion of the soil organic matter was extremely resistant to oxidation, had a narrow C:N ratio, and apparently little exchange capacity. This suggests a close association between the organic matter and the inorganic soil colloids. The marked resistance to oxidation of a considerable portion of the organic matter may partly explain the high contents found even in continuously cultivated soils in Puerto Rico.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Munifatul Izzati ◽  
SRI HARYANTI ◽  
RINI BUDI HASTUTI

Abstract. Izzati M, Haryanti S, Hastuti RB. 2021. Effectivity of bulrush (Scirpus californicus) as a soil conditioner  increasing sandy and clay soil fertility. Biodiversitas 22: 3423-3429. Bullrush (Scirpus californicus) is a species of macrophytes that often populates lakesides. This aquatic plant was rarely studied and its use has not been explored yet. This study was carried out to determine the effects of soil conditioner made from bulrush on sandy and clay soil fertility. Collected bulrush from Rawa Pening lake was milled into a powder and used as a soil conditioner in a proportion of 1:1. After a week, soil fertility was evaluated including organic matter content, water retention, the ratio of C/N, and bacteria population. The study was designed using a Completely Randomized Design with two treatments and control. Resulted data were analyzed using a t-test to evaluate the difference between the two treatments. Results showed that bulrush powder application significantly increased sandy and clay soil fertility. The organic matter content significantly increased in both sandy (p<0,01) and clay soils (p<005). The water retention of sandy soil was increased by 74% (p<0,01), while in clay soil was reduced by 27% (p<0,01). The C/N ratio was significantly reduced in both sandy and clay soil (p<0,05), while the bacteria population significantly increased (p<0,01). It is suggested to use the bulrush as a soil conditioner particularly for sandy and clay soils.


2018 ◽  
Vol 12 (1) ◽  
pp. 49-59
Author(s):  
Ulyan Khalif

Landuse change are suspected to be one responsible to soil fertility decline on Resapombo, Doko, Blitar. Efforts done by local farmers to deal with these problems are plantation of P. falcataria trough a reforestation program around 2011-2012. The benefits of the program are still need to be assessed so that this research was done (1) to compare the soil quality between P. falcataria-planted field and no P.falcataria field by the parameters of soil organic matter content and available N, (2) to study the relationship between organic matter input and soil organic matter content and available N, and (3) to identify factors affecting N availability post-P. falcatariaplantation. This research used randomized block design with 5 treatments (annual crop field, 3 and 6 years P. falcaria plantation field, agroforestry field with P. falcataria + coffee + talas plantation, and ex-P. falcataria-planted field. Soil were sampled compositely by 3 replication from 0-20 cm depth. Litter were sampled from a 0.5m2 sub-plot of each treatment. Results showed that P. falcataria plantations enhance soil fertility indicated by increased soil organic matter input to 10.6 times (monoculture) and 17.6 times (agroforestry) control, increased soil organic matter content by 1.5 times (monoculture) and 2.3 times(agroforestry) control, increased total N of 1.6 times (monoculture) and 2.4 times (agroforestry) control, increased ammonium by 1.7 times (monoculture) and 3.2 times (agroforestry) control, and increased nitrate by 2.4 times (monoculture) and 3.9 times(agroforestry) control.The increased soil N content of P. falcataria-planted field were caused by higher soil organic inputs compared to those with no P. falcataria plantation. Nitrogen availability affected by soil texture but have no relationship with soil pH. However, agroforestry fields showed higher pH, organic C, total N, and available N than monoculture P. falcataria fields. Measured soil chemical properties showed no significant change by the increase of P. falcataria age, moreover, they declined down towards control on ex-P. falcatariaplantation. This indicates that reforestation would only give a temporary soil quality enhancement.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Andrzej Lachacz ◽  
Monika Nitkiewicz ◽  
Barbara Kalisz

AbstractThe objective of this study was to estimate the water repellency of post-boggy soils in north-eastern Poland. Potential water repellency was determined based on the water drop penetration time (WDPT) test and the molarity of an ethanol droplet (MED) test. A total of 276 soil samples with a varied organic carbon (OC) content, ranging from trace amounts in sandy subsoils to 44.4% in organic soils, were analyzed. The investigated material represents peat-muck soils (Eutri-Sapric Histsols) and muck-like soils (Arenic Gleysols, Areni-Humic Gleysols, Gleyic Arenosols). The mineral matter of the analyzed soils comprised loose sand. The obtained results indicate that peat soil formations are marked by higher potential water repellency than muck soil formations. The highest WDPT values (16 390 s) were reported in respect of an alder peat sample with 41.9% OC content, collected at a depth of 55–60 cm. In the group of muck soils, a sample with 36.7% OC content, collected at a depth of 15–20 cm, was marked by the highest water repellency (WDPT 10 492 s). The water repellency of the studied soils is dependent on organic matter content, and it is manifested only when organic matter content is higher than 20%. Soils with OC content of up to 12% show low water repellency or are hydrophilic. Organic soil formations (>12% OC) are characterized by a varied degree of water repellency, but WDPT values in excess of 2000 s are reported only in respect of soils containing more than 35% OC. A significant positive correlation between the content of organic matter, organic carbon, total nitrogen and water repellency was observed in the entire studied population (n = 276). A significant positive correlation was also found between WDPT values and the C:N ratio, while a significant negative correlation was reported in respect of $$ pH_{H_2 O} $$.


1990 ◽  
Vol 4 (2) ◽  
pp. 279-283 ◽  
Author(s):  
Michael R. Blumhorst ◽  
Jerome B. Weber ◽  
Len R. Swain

Field experiments were conducted on six loam and sandy loam soils to study the influence of various soil parameters on atrazine, cyanazine, alachlor, metolachlor, and pendimethalin efficacy. Herbicidal activity was highly correlated to the soil organic content. Humic matter content was equally or better correlated (r = 0.70 to 0.91) with herbicide bioactivity than was organic matter content (r = 0.66 to 0.84). Regression equations were determined which allow herbicide rate recommendations for 80% weed control to be calculated based on soil humic matter or organic matter levels.


Sign in / Sign up

Export Citation Format

Share Document