scholarly journals Evaluation of Coconut Based Anacardium occidentale Agroforestry System to Improve the Soil Properties of Coconut Growing Lands in Wet, Intermediate and Dry Zone of Sri Lanka

CORD ◽  
2019 ◽  
Vol 35 (01) ◽  
pp. 50
Author(s):  
S. H. S. Senarathne

This study was intended to assess the impact of coconut based Anacardium occidentale (Cashew) agroforestry systems on soil fertility of degraded coconut lands in wet, intermediate and dry zones of Sri Lanka. Two treatments were evaluated according to randomized complete block design with three replicates. Coconut based agroforestry systems intercropped with A. occidentale and sole coconut were evaluated as two treatments. Soils from three depths were analyzed for its’ chemical, physical and biological properties. According to the esults, higher total N, available P and exchangeable K levels were shown in sole coconut systems than A. occidentale intercropped system while the higher total N levels (2% higher than top soil and 27% higher than deepr soil) were observed in sub soils compared top and deep soils. Higher P content was observed in top soils than in deeper soils. The exchangeable K was observed in higher quantities in sub soil than in deeper soils and was varied with locations. Organic matter content in intercropping of A. occidentale has been increased by 37% and the highest was observed in top soils. Soil bulk density has been reduced by 9% in A. occidentale intercropped system enhancing the root growth. Bulk density has been increased with the depth of the soil. Higher soil microbial activity was observed in A. occidentale intercropped system and it was 22% higher than sole coconut system. Sole coconut system has 50% higher soil moisture percentage and the highest was recorded in sub soils. This study confirms that intercropping of A. occidentale has a positive effect on improving soil fertility of degraded coconut growing soils in wet, intermediate and dry zones of Sri Lanka.

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Raphiou Maliki ◽  
Brice Sinsin ◽  
Anne Floquet ◽  
Denis Cornet ◽  
Eric Malezieux ◽  
...  

Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow ofAndropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation,Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.


2015 ◽  
Vol 30 (1) ◽  
pp. 20
Author(s):  
Deni Prasetiyo ◽  
Djoko Purnomo ◽  
Supriyadi Supriyadi

<p><em>Soybean is one of the most important food commodities in Indonesia and also it has high value. The needs continue to increase each year, but not offset by increased production become an issue that must be addressed. One attempt to increase soybean production is through the cultivation in agroforestry systems through improving the quality of soil fertility. This research aims to study the effect of various doses of </em><em>litter teak</em><em> and NPK fertilizer on chemical soil fertility and the potential of soybeans yield in agroforestry systems based teak crops. Experiments using a Randomized Complete Block Design </em><em>(RCBD) </em><em>with two factors, namely litter</em><em> teak</em><em> doses (0 ton ha<sup>-1</sup>, 2.500 ton ha<sup>-1</sup>, 5.000 ton ha<sup>-1</sup>, 7.500 ton ha<sup>-1</sup>) and dose</em><em>s</em><em> of NPK fertilizer (60-60-60 and 60-120-60) on Grobogan soybean varieties. The variables measured were pH, organic matter content, N-total soil, cation exchange capacity (CEC), plant tissue of N, P-total soil, and component production. Data analysis using analysis of variance F-test based on the level of 5% and significantly different variables followed by </em><em>Tukey’s method </em><em>level of 5%</em><em>. The results showed that combination treatment with various doses of teak litter NPK fertilizers can increase total nitrogen content of the soil with the highest yield of 1.69% on S1D2 treatment, but to organic matter, CEC, pH, and total soil P not significant effect. Component of soybean varieties of the highest Grobogan of 0.83 tons ha-1 in the treatment S1D1. The result was still below the average of the national soybean production.</em></p>


2018 ◽  
Vol 23 (1) ◽  
pp. 1-9
Author(s):  
Jauhari Syamsiyah ◽  
Sumarno Sumarno ◽  
Suryono Suryono ◽  
Winda Sari ◽  
Muhammad Anwar

One effort that can be done to improve soil fertility and crop yields is fertilization. Fertilization using a mixed source fertilizer (MSF) is an option to overcome the impact of inorganic fertilizer use and organic fertilizer drawbacks. This study aims to evaluate the effects of MSF application on the chemical properties of Inceptisol and rice yields. A field experiment was conducted using a completely randomized block design (RCBD) with two factors and three replications. The first factor was the three formulas of MSF (F1, F2, F3) and the second factor was MSF doses (0, 2.5, 5, 7.5, 10 Mg ha-1). The results show that there is no significant difference on the total soil N, available soil P, plant height and total number of tillers of rice plants applied with the three MSF formulas. The increased MSF doses applied significantly improve the soil chemical properties of Inceptisol and rice yields. The application of 10 Mg ha-1 MSF increases total- N (57.89%), available-P (29.13%), exchangeable-Ca and -Mg (117% and 250%, respectively), plant height (40%) and total number of tillers (43.2%) in comparison to those without MSF application. There are interaction effects between formulas and doses of MSF on the amount of exchangeable-K, organic-C content, and CEC of the soil and rice yields. The application of 10 Mg ha-1 MSF F3 results in better effects on the amount of exchangeable-K, organic-C content and CEC of the soil, and number of productive tillers and rice yields than the application of other MSF formulas. The MSF can be used as an alternatif fertilizer that can improve Inceptisol productivity.  


2017 ◽  
Vol 38 (2) ◽  
pp. 659 ◽  
Author(s):  
Fernando Shintate Galindo ◽  
Marcelo Carvalho Minhoto Teixeira Filho ◽  
Salatiér Buzetti ◽  
José Mateus Kondo Santini ◽  
João Leonardo Miranda Bellotte ◽  
...  

Azospirillum brasilense plays an important role in biological nitrogen fixation (BNF) in grasses. However, further studies are needed to define how much mineral N can be applied while simultaneously maintaining BNF contribution and maximizing crop yield and to determine the impact of these practices on soil fertility. Thus, we aimed to investigate the effect of inoculation with A. brasilense, in conjunction with varying N doses and sources in a Cerrado soil, on soil chemical attributes after two years of irrigated wheat production. The experiment was initiated in Selvíria - MS under no-tillage production in an Oxisol in 2014 and 2015. The experimental design was a randomized block design with four replications, and treatments were arranged in a 2 x 5 x 2 factorial arrangement as follows: two N sources (urea and Super N - urea with inhibitor of the enzyme urease NBPT (N - (n-butyl thiophosphoric triamide))), five N rates (0, 50, 100, 150 and 200 kg ha-1), and with or without seed inoculation with A. brasilense. The increase in N rates did not influence the chemical soil attributes. Super N acidified the soil more compared to urea. A. brasilense inoculation reduced the effect of soil acidification in intensive irrigated wheat cultivation; however, the base extraction was higher, resulting in a lower soil CEC after cultivation with inoculation. Therefore, the cultivation of wheat inoculated with A. brasilense was not harmful to soil fertility because it did not reduce the base saturation and organic matter content (P, K, Ca, Mg, and S).


2020 ◽  
Vol 12 (9) ◽  
pp. 115
Author(s):  
Md. Abdul Quddus ◽  
Md. Babul Anwar ◽  
Habib Mahammad Naser ◽  
Md. Alamgir Siddiky ◽  
Md. Jamal Hussain ◽  
...  

Zinc (Zn), boron (B) and molybdenum (Mo) are essential to increase the productivity of mungbean (Vigna radiata L.) and help to maintain the soil fertility but mostly ignored. Hence, an experiment was conducted during the years of 2016 and 2017 to know the impact of Zn, B and Mo on mungbean yield, nutrient uptake, economics and soil fertility improvement. The experiments were planned in randomized complete block design including of eight treatments with three replications. The treatments were T1 = Control, T2 = Zn 2 kg ha-1, T3 = B 1.5 kg ha-1, T4 = Mo 1 kg ha-1, T5 = Zn2B1.5, T6 = Zn2Mo1, T7 = B1.5Mo1 and T8 = Zn2B1.5Mo1. The other fertilizers, N, P, K and S at 20, 20, 30 and 10 kg ha-1, respectively were used in all treatments. The results indicate that the highest seed yield (1522 kg ha-1) was obtained from T8 treatment followed by T7. The highest percent seed yield increment (51.6%) over control was achieved in T8 treatment. Most of the growth and yield contributing characters of mungbean were recorded highest in T8 treatment. The maximum nodulation (37.6) and highest amount of protein (24.3%) was also obtained from T8 treatment. The T8 treatment contributed positively to attain higher total uptake of N, P, K, S, Zn and B by mungbean. The combination of Zn, B and Mo is showed more productive compare to sole or couple use of these micronutrients. The T8 (Zn2B1.5Mo1 kg ha-1) treatment exhibited helpful effects on soil organic matter, total N, available P, Zn and B. This treatment also showed economically better on the basis of net return. Results of the present study suggest that the combination of Zn, B and Mo applied at 2, 1.5 and 1 kg ha-1, respectively could be recommended for mungbean cultivation.


2017 ◽  
Vol 47 (3) ◽  
Author(s):  
Gustavo Brunetto ◽  
◽  
Cesar Cella ◽  
Alcione Miotto ◽  
Eduardo Girotto ◽  
...  

ABSTRACT: Little is known about the impact of N fertilization on fruit production and composition in orange groves grown in soils with low or medium organic matter content in Rio Grande do Sul (RS). This study aimed to evaluate how N fertilization of orange trees cv. 'Lane Late' in a sandy soil may interfere in fruit yield and composition of fruit and juice. The experiment was conducted with orange trees cv. 'Lane Late' growing in Sandy Typic Hapludalf soil, in Rosário do Sul (RS). The plants received applications of 0, 20, 40, 60, 80, 100, 120, 140 and 160kg N ha-1. Total N in leaves, number of fruits per plant, yield, fresh weight, fruit diameter, peel thickness, percentage of fruit juice, peel color, juice color, ascorbic acid content, total soluble solids (TSS) and total titratable acidity were evaluated in 2010/2011 and 2011/2012 crops. In the first crop, especially yield, number of fruits per plant, TSS content in fruit juice and ratio decreased with increasing N rate applied. However, in the second crop, the total titratable acidity of the fruit juice prominently increased with the dose of N applied. In both crops, results were highly influenced by rainfall distribution, which affect the plant physiology, soil N dynamics and, consequently, probability of response to N applied and the loss of mineral N in the soil.


2017 ◽  
Vol 10 (1) ◽  
pp. 325
Author(s):  
Hebert D. A. Abobi ◽  
Armand W. Koné ◽  
Bernard Y. Koffi ◽  
Saint Salomon F. Diahuissié ◽  
Stanislas K. Loukou ◽  
...  

Poultry litter is increasingly used as organic amendment in market gardening in Côte d’Ivoire. To know about the sustainability of this practice, its impacts on soil quality should be known. This study aimed at assessing the effect on soil fertility of composted poultry litter addition for 16 years following two distinct ways, and identifying soil parameters driving cucumber yield. Trials were laid out in a Fisher randomized block design with 3 treatments replicated 5 times each: Control (C), Surface-applied compost (SAC) and Buried compost (BC). Soil (0-20 cm) chemical characteristics and cucumber growth and yield parameters were measured. Values of all parameters were higher with compost addition compared to the control, except for the C:N ratio. SAC and BC showed similar values of organic C, total N, CEC, pH and available phosphorus. However, Ca2+, Mg2+, K+ and base saturation were higher in SAC than in BC. Relative to values in the control, the greatest changes in soil parameters were observed with exchangeable cations, followed by soil organic matter. Soil organic C and total N concentrations have doubled in SAC while Ca2+, Mg2+, and K+ increased at greater rate (702.4, 400.9 and 186.67% respectively). Also, cucumber growth parameters were the highest with compost addition compared to the control. Significant effect of the compost application way on cucumber was also observed: collar diameter, leaf area and fresh fruit yield in SAC (0.72±0.02 cm, 258.9±12.3 cm2, 11.1±1.3 t ha-1, respectively) were higher than in BC (0.56±0.01 cm, 230.2±2.5 cm2, 5.4±0.5 t ha-1 respectively). Fruit yields in SAC and BC were four times and twice higher than in the control (2.6±0.3 t ha-1), respectively. Cucumber growth parameters were determined by soil concentration in Mg2+ while yield was determined by Ca2+. Composted poultry litter should be promoted for a sustainable soil fertility management in vegetable farming systems.


Author(s):  
C. Ewbank ◽  
C.M. Minter ◽  
R.G. Wilkinson

The response of dairy cows offered grass silage to increases in the level of concentrate supplementation is well documented. However little information exists for dairy sheep. The aim of this trial was to assess the impact of concentrate level on silage dry matter intake, milk production and quality and daily liveweight change in milking ewes.After weaning at 8 weeks, 24 mature Friesland ewes were individually penned. Ewes were offered precision chopped grass silage: (dry matter (DM) 203 g/kg; ph 3.4; ammonia nitrogen 58 g/kg total N; crude protein (CP) 164 g/kg DM; metabolisable energy (ME) 10.9 MJ/kg DM) ad-libitum and concentrate DM (CP 194) g/kg DM; ME 12.8 MJ/kg DM) at daily rates of 0; 0.7, 1.4 and 2.1 kg/day with no more than 0.6 kg per feed. Water was available ad libitum. All animals were milked twice daily through a Fullwood parlour and weighed weekly. Silage was fed daily and refusals removed twice weekly. The experiment lasted 6 weeks and was analysed as a random block design.


2002 ◽  
Vol 139 (4) ◽  
pp. 405-412 ◽  
Author(s):  
V. K. SINGH ◽  
B. B. SHARMA ◽  
B. S. DWIVEDI

Field experiments were conducted at the Crop Research Centre of Govind Ballabh Pant University of Agriculture and Technology, Pantnagar during 1996/97 and 1997/98. Each experiment comprised 10 crop sequences: (a) wheat–rice, (b) chickpea–rice, (c) lentil–rice, (d) pea–rice, (e) wheat–mungbean green manure–rice, (f) wheat–Sesbania green manure–rice, (g) wheat–fodder–rice, (h) chickpea–fodder–rice, (i) lentil–fodder–rice and (j) pea–fodder–rice, in a randomized block design with four replications. The crop sequences were compared in terms of economic rice equivalent yield (REY), protein production, apparent nutrient balances and effect on soil fertility status. Amongst crop sequences involving two crops each year (200% cropping intensity), chickpea–rice gave highest REY and protein production. Of the sequences involving three crops each year (300% cropping intensity), chickpea–fodder–rice and wheat–fodder–rice were superior to others. The P balances were positive for all sequences, whereas K balances were generally negative except for sequences involving green manure legumes. Green manuring with Sesbania or mungbean helped restore soil fertility, indicating the advantage of green manure for higher productivity and sustainability of rice–wheat system. Chickpea–rice and chickpea–fodder–rice appeared promising alternatives to rice–wheat crop sequence.


1996 ◽  
Vol 26 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Marcel Prévost

Two types of scarification (cone and disk) were applied at two intensities (simple and double passes), in a randomized complete block design, established alongside buffer stands of spruce protective of water courses, that provided a natural seed source. Treatment effects on seedbed evolution, natural seeding of black spruce (Piceamariana (Mill.) BSP), competing vegetation, and soil physical and chemical properties were examined over a 3-year period. In situ nitrogen mineralization was also studied, using the buried-bag method. All scarification treatments created a surface horizon (0–10 cm) with 80% less organic matter content than the control treatment. However, treatments tended to loosen the exposed deep layers, creating microsites whose compactness appeared adequate for root development (1.07–1.22 Mg/m3). The organic matter loss mainly decreased exchangeable K and Mg in the surface 20 cm of scarified microsites. Scarification had little impact on total N of sampled profiles and clearcutting did not increase N mineralization with regard to the forest, during the first year after disturbance. The weak soil warming and the stability of temperatures under the unscarified humus suggest that clearcutting did not significantly enhanced microbial activity on the site. However, removal of the insulating humus layer allowed a significant summer soil warming in the furrows. Despite this, scarified microsites were characterized by N immobilization during the first growing season after treatment. However, net N production was positive during the winter period, presumably because of a N-flux phenomenon. Scarification improved black spruce regeneration by natural seeding. Three years after treatment, stocking levels reached 40 to 51% in the scarified sectors while they reached 31% in the controls, this gap being mainly attributed to the second germination year. The difference can be explained by the improved receptivity of bare mineral soil, well-decomposed humus, and mixed mineral–organic seedbeds that covered 12–20% of the scarified areas immediately after treatment. Generally, results indicate that microsites created by a light scarification are as receptive as microsites created by a severe perturbation. Finally, every scarification treatment efficiently controlled the ericaceous shrub cover during the first 3 years after treatment.


Sign in / Sign up

Export Citation Format

Share Document