scholarly journals Climate Change-Induced Agricultural Drought over Moist-Cool and Moist-Warm Climatic Zones: A Case Study in Ale and Adami-Tulu Woredas, in Oromia National Regional State, Ethiopia

2019 ◽  
Vol 34 (2) ◽  
pp. 188
Author(s):  
Fedhasa Benti ◽  
Achalu Chimdi

<span>Frequency and intensity of drought have troubled sustainable agriculture and worsened food insecurity of Ethiopians. This study aimed to investigate climate change-induced agricultural drought over the moist-cool and moist-warm climatic zones, using historical precipitation and temperature data recorded in the crop growing months for 35 years. The changes of temperatures and precipitation were analyzed using Mann Kendall trend test. Agricultural drought indices were analyzed using R-model by withdrawing potential evapotranspiration from precipitation to determine the existing water balance. The values of drought indices were used to characterize the duration, severity, intensity and trends of agricultural drought. Results showed that the changes in maximum and minimum temperatures and precipitation were significantly stronger in the Ale Woreda (P&lt;0.05). However, minimum temperature and precipitation in Adami-Tulu did not noticeably change. The spatial drought events occurred more widely in Ale than in Adami Tulu. The events occurred 12 and 17 times with cumulative severity indices of 41.95 and 48.22 in Ale and Adami-Tulu, respectively. Agricultural drought intensities of the two districts were labeled as “severe” and “moderate dry”, for Ale and Adami-Tulu, respectively. The intensity of drought in Ale district significantly increased (P&lt;0.05) and that in Adami-Tulu negligibly changed. Therefore, the study explicitly showed that more changes in temperature and precipitation aggravated agricultural drought in Ale than in Adami-Tulu more intensely and it is suggested that more attention shall be paid to Ale Woreda.</span>

2019 ◽  
Vol 11 (9) ◽  
pp. 1066 ◽  
Author(s):  
Yijing Cao ◽  
Shengbo Chen ◽  
Lei Wang ◽  
Bingxue Zhu ◽  
Tianqi Lu ◽  
...  

Drought, which causes the economic, social, and environmental losses, also threatens food security worldwide. In this study, we developed a vegetation-soil water deficit (VSWD) method to better assess agricultural droughts. The VSWD method considers precipitation, potential evapotranspiration (PET) and soil moisture. The soil moisture from different soil layers was compared with the in situ drought indices to select the appropriate depths for calculating soil moisture during growing seasons. The VSWD method and other indices for assessing the agricultural droughts, i.e., Scaled Drought Condition Index (SDCI), Vegetation Health Index (VHI) and Temperature Vegetation Dryness Index (TVDI), were compared with the in situ and multi-scales of Standardized Precipitation Evapotranspiration Index (SPEIs). The results show that the VSWD method has better performance than SDCI, VHI, and TVDI. Based on the drought events collected from field sampling, it is found that the VSWD method can better distinguish the severities of agricultural droughts than other indices mentioned here. Moreover, the performances of VSWD, SPEIs, SDCI and VHI in the major historical drought events recorded in the study area show that VSWD has generated the most sensible results than others. However, the limitation of the VSWD method is also discussed.


2020 ◽  
Vol 11 (S1) ◽  
pp. 289-309 ◽  
Author(s):  
Hrachuhi Galstyan ◽  
Shamshad Khan ◽  
Hovik Sayadyan ◽  
Artur Sargsyan ◽  
Tatevik Safaryan

Abstract The primary goal of the study is to analyze the spatial-temporal trends and distribution of flood events in the context of climate change in Armenia. For that purpose, some meteorological parameters, physical-geographical factors and the flood events data were studied for the 1994–2019 period. The linear trends demonstrate an increasing tendency of air temperature and precipitation. Those trends expressed increased flood occurrences, especially for the 2000s, whereas the Mann–Kendall (MK) trend test reveals no significant change. The number of flood events reaches its maximum in 2011 with its peak in May. Out of 191 flood events, half of the occurrences are recorded in the flat areas and southern aspects of the mountains (22% of the country's territory). There is a certain clustering of flood events in the areas with up to 5° slopes (66% of flood events). The most flood vulnerable areas were analyzed and mapped via Geographical Information System (GIS). The GIS-based mapping shows the location of flood vulnerable areas in the central, northern parts of the country, and the coastal areas of Lake Sevan. Our methodological approach elaborates the localization of flood-prone sites. It can be used for the flood hazard assessment mapping and risk management.


2021 ◽  
Author(s):  
Livia Serrao ◽  
Lorenzo Giovannini ◽  
Luz Elita Balcazar Terrones ◽  
Hugo Alfredo Huamaní Yupanqui ◽  
Dino Zardi

&lt;p&gt;Climatic characteristics and weather events have always conditioned the success of a harvest. Climate change and the associated increase in intense weather phenomena in recent years are making it clearer than ever that agriculture is among the sectors most at risk. Although problems in agriculture are found all over the world, the most vulnerable contexts are those where agriculture is low-tech and rainfed. Here, adaptation strategies are even more urgent to secure the food production. Assuming that the awareness of climate change is the basis for the adoption of adaptation and mitigation strategies, it is interesting to correlate the degree of perception of local inhabitants with their willingness to adopt bottom-up initiatives.&lt;/p&gt;&lt;p&gt;The current study focuses on banana producers&amp;#8217; perceptions of climate change in a tropical valley, and the initiatives that farmers adopt to cope with recent intense weather events. The banana plant (Musa Musacae) grows in tropical climates with annual rainfall around 2000 mm and average temperatures around 27&amp;#176;C. The species&amp;#8217; threadlike root system and the weak pseudostem make it particularly vulnerable to wind gusts, which, at speeds higher than 15 m/s, can bend and knock over entire plantations. The increased frequency of convective thunderstorms observed in connection with climate change has made downburst phenomena more frequent and caused greater crop loss.&lt;/p&gt;&lt;p&gt;The aim of the present work is to estimate the correlation between banana producers&amp;#8217; perceptions of climate change and their bottom-up initiatives for adaptation. To achieve this goal, the case study of the Upper Huallaga valley, which is located in the Peruvian Amazon region as shown in Figure 1, is analysed. The work was carried out at two levels: (i) we interviewed 73 banana producers in the valley, (ii) we estimated the alterations and trends in temperature and precipitation recorded by the only three available meteorological stations within the valley. Finally, we compared the two databases to evaluate if the perception of the population was confirmed by the data. Most of the surveyed population observed an increase in temperature, consistent with the results of the data analysis, and an increase in precipitation, which was not consistent with observations as these showed a cyclic variation without a clear trend. With regards to the adaptation measures, it was observed that, although a clear majority of the sample surveyed (around 82%) agreed with the existence of climate change, only 46% of them had taken any initiative to counteract adverse events in some way. However, it is important to note that the strategies implemented were all devised and implemented by the farmers themselves. Funding and coordinating the dissemination of these adaptation practices by the local authority through a rural development plan could certainly strengthen the population&amp;#8217;s effort.&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.34e8e7df2cff59382630161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=59f620ca81f3a3bb7bb44139d499513c&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;em&gt;Figure 1, On the left side: the Upper Huallaga basin. &lt;/em&gt;&lt;em&gt;On the right side: the study area&lt;/em&gt;&lt;/p&gt;


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Roman Corobov ◽  
Igor Sîrodoev ◽  
Sonja Koeppel ◽  
Nickolai Denisov ◽  
Ghennadi Sîrodoev

Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin’s natural and socioeconomic systems. As a spatial “scale” of the assessment, Moldova’s administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971–2000) temperature and precipitation and projections of their changes in 2021–2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin’s “hotspots” were discussed with public participation.


2020 ◽  
Vol 35 (1) ◽  
pp. 135
Author(s):  
Terefa Adunya ◽  
Fedhasa Chalchisa Benti

<p>Increasing temperature and altered precipitation patterns lead to the extreme weather events such as drought and flood, which severely affects the agricultural production. This study was aimed to assess the impact of climate change-induced agricultural drought on four cereal crops in Bako Tibe District. Time-series climate and crop yield data, recorded from 1989 to 2018, were acquired from NASA’s data portal and Bako Research Institute. The changes in temperature and precipitation were analyzed using Mann Kendall trend test. The agricultural drought index was analyzed using R-software. The correlation between the selected yield crops and drought indices were evaluated using Pearson correlation coefficient. The results show that trends of seasonal and annual maximum and minimum temperatures were significantly increased (P&lt;0.05). However, seasonal and annual precipitations were insignificantly decreased (P&gt;0.05). Moderate to severe agricultural drought intensities happened four times in the last three decades. These drought spells spatially covered about 36% of the total area of the district. Crop yields and drought indices were significantly correlated at p-values; 0.0034, 0.043, 0.003 and 0.001 for teff, wheat, barley and maize, respectively. The coefficient of determination (R2) values of crop yields were 28.3%, 30.9%, 28.5% and 34.6% for teff, wheat, barley and maize, correspondingly. The study clearly suggests that the increase in temperature and decrease in precipitation enhanced the frequency and intensity of drought events and these impacted the selected crop yields during the past three decades. The map-based results could be used as guides for governmental and non-governmental organizations concerning on drought impact mitigation activities in the district by encouraging farmers to adopt appropriate agricultural technologies, drought tolerant crop varieties and small scale irrigation.</p>


2012 ◽  
Vol 9 (11) ◽  
pp. 13231-13249 ◽  
Author(s):  
E. Joetzjer ◽  
H. Douville ◽  
C. Delire ◽  
P. Ciais ◽  
B. Decharme ◽  
...  

Abstract. The present study compares three meteorological drought indices (scPDSI, SPI and SPEI respectively) and their ability to account for the variations of annual mean river discharge on both interannual and climate change timescales. The Standardized Runoff Index (SRI) is used as a proxy of river discharge. The Mississippi and Amazon river basins provide two contrasted testbeds for this analysis. All meteorological drought indices are derived from monthly 2-meter temperature and/or precipitation, using either gridded observations or outputs of a global climate model. The SPI based solely on precipitation is not outperformed by the SPEI (accounting for potential evapotranspiration) and the scPDSI (based on a simplified water balance) at detecting interannual SRI variations. Under increasing concentrations of greenhouse gases, the simulated response of the areal fraction in drought is highly index-dependent, suggesting that more physical water balance models are needed to account for the impact of global warming on hydrological droughts.


2021 ◽  
Author(s):  
Nikolaos Christidis ◽  
Peter Stott

&lt;p&gt;As the climate becomes warmer under the influence of anthropogenic forcings, increases in the concentration of the atmospheric water vapour may lead to an intensification of wet and dry extremes. Understanding regional hydroclimatic changes can provide actionable information to help communities adapt to impacts specific to their location. This study employs an ensemble of 9 CMIP6 models and compares experiments with and without the effect of human influence using detection and attribution methodologies. The analysis employs two popular drought indices: the rainfall-based standardised precipitation index (SPI), and its extension, the standardized precipitation evapotranspiration index (SPEI), which also accounts for changes in potential evapotranspiration. Both indices are defined relative to the pre-industrial climate, which enables a comparison between past, present and future climatic conditions. Potential evapotranspiration is computed with the simple, temperature-based, Thornthwaite formula. The latter has been criticised for omitting the influences of radiation, humidity and wind, but has been shown to yield very similar trends, spatial averages and correlations with more sophisticated models. It is therefore deemed to be adequate in studies assessing the broader overall effect of climate change, which are more concerned with wet and dry trends and changes in characteristics of extremes rather than the precise estimation of drought index values. The rainfall-based index suggests a shift towards wetter conditions in the north and dryer in the south of the continent, as well as an overall increase in variability. Nevertheless, when the temperature effect is included, the wet trends in the north are largely masked leading to increasingly drier summers across most of the continent. A formal statistical methodology indicates that the fingerprint of forced climate change has emerged above variability and is thus detectable in the observational trends of both indices. A broadening of the SPI distribution also suggests higher rainfall variability in a warmer climate. The study demonstrates a striking drying trend in the Mediterranean region, suggesting that what were extremely dry conditions there in the pre-industrial climate may become normal by the end of the century.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document