scholarly journals PENGARUH BAHAN BAKAR PREMIUM, PERTAMAX, PERTAMAX PLUS DAN VARIASI RASIO KOMPRESI TERHADAP KADAR EMISI GAS BUANG CO DAN HC PADA SUZUKI SHOGUN FL 125 SP TAHUN 2007

Author(s):  
Eko Winarto ◽  
Husin Bugis ◽  
C. Sudibyo

<p>The purpose of this research: (1) Investigated the motorcycle exhaust emissions Suzuki Shogun FL 125 SP in 2007 used premium,pertamax,and pertamax plus. (2) Investigated the motorcycle exhaust emissions Suzuki Shogun FL 125 SP in 2007 used variation of compression ratio. (3) Investigated the motorcycle exhaust emissions Suzuki Shogun FL 125 SP in 2007 used interaction premium,pertamax, pertamax plus, and variation of compression ratio.<br />This research was used experimental methods.The research was measurement at the Laboratory of Automotive Mechanical Engineering Education Program, JPTK, FKIP, UNS Surakarta to the address on Ahmad Yani road no. 200 Kartasura. Test of CO and HC exhaust gas emissions was used a gas analyzer type STARGAS 898. The population in this research was a motorcycle Suzuki Shogun FL 125 SP in 2007 and the sample in this research was a motorcycle Suzuki Shogun FL 125 SP in 2007 with engine number: F4A1ID113687.<br />Based on this researchcan be concluded: (1) The measurement premium fuel producedthe lowest emission in CO 3.884% by 9.1:1 compression ratio and the the lowestexhaust gas emission levels in 168 ppmby 9.1:1 compression ratio. (2) The measurement pertamax fuel produced the lowest exhaust gas emission levels in CO 3.237% by 9.5:1 compression ratio and the the lowest exhaust gas emission levels in 210 ppm by 9.5:1 compression ratio(3) The measurement pertamax plus fuel produces the lowest exhaust gas emission levels in CO 2.615% by 10.2:1 compression ratio and the the lowest exhaust gas emission levels in 237 ppm by 9.5:1 compression ratio</p>

2019 ◽  
Vol 2 (01) ◽  
pp. 27-30
Author(s):  
SUGENG PRAMUDIBYO PRAMUDIBYO

The high population in Indonesia has an impact on increasing the mobility of the population in work and activities, which is followed by the increased transportation facilities needed by the community. One of the negative effects of the increasing number of vehicles is the danger of exhaust emissions. One way to minimize the danger of exhaust gases is to regulate the mixture of air and fuel on the gasoline engine. In Yamaha injection motors there is a CO setting technology, this technology will have an impact on fuel use. The standard CO on a Yamaha motorbike is 0 and can be added or reduced (±) until it reaches 30. Increasing CO one strip will cause the fuel sprayed by the injector to be reduced by 0.05 cc. Examination of exhaust gas emissions is carried out using the Qrotect 401 Engine Gas Analyzer which is capable of measuring CO2, O2, CO, HC and Lamda. Based on the test results show that the lowest exhaust emissions are produced by the vehicle at 2500 rpm and in CO-30 mode settings, namely CO gas emissions of 0.49%. So we can conclude that the lowest exhaust gas emissions are produced by the vehicle at rpm 2500 with CO-30 settings. In addition to co mode settings, variations in engine rpm also affect exhaust emissions. In different modes but with different rpm the results will also be different. In the CO 10 mode setting with rpm 1400 CO gas emission is produced at 2.102 while at 2500 rpm is produced 0.821. So at rpm 2500 produced exhaust emissions lower than rpm 1400. There is a significant effect between CO mode settings and engine rpm on motorcycle exhaust emissions.


Author(s):  
Rina Maryanti ◽  

The purpose of this study was to find out science learning materials for students with special needs regarding the concept of exhaust emissions in transportation equipment. The research method used experimental demonstration. We prepared research instruments for learning the concept of exhaust emissions in transportation equipment for students with special needs. The results showed that several tools and materials must be provided and several lists of research instrument questions were made. In addition to tools and materials, methods and media must also be adapted to the needs of the child. That’s because the methods and media that are in accordance with the needs of students can make it easier for students to understand the learning material. We hope that the results of this study can make it easier for teachers to teach the concept of exhaust gas emission on transportation equipment, especially for students with special needs.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2340
Author(s):  
Kinga Skobiej ◽  
Jacek Pielecha

Transportation, as one of the most growing industries, is problematic due to environmental pollution. A solution to reduce the environmental burden is stricter emission standards and homologation tests that correspond to the actual conditions of vehicle use. Another solution is the widespread introduction of hybrid vehicles—especially the plug-in type. Due to exhaust emission tests in RDE (real driving emissions) tests, it is possible to determine the real ecological aspects of these vehicles. The authors of this paper used RDE testing of the exhaust emissions of plug-in hybrid vehicles and on this basis evaluated various hybrid vehicles from an ecological point of view. An innovative solution proposed by the authors is to define classes of plug-in hybrid vehicles (classes from A to C) due to exhaust emissions. An innovative way is to determine the extreme results of exhaust gas emission within the range of acceptable scatter of the obtained results. By valuating vehicles, it will be possible in the future to determine the guidelines useful in designing more environmentally friendly power units in plug-in hybrid vehicles.


2010 ◽  
Author(s):  
Herbert Roeser ◽  
Dilip Kalyankar

Ships are an integral part of modern commercial transport, leisure travel, and military system. A diesel engine was used for the first time for the propulsion of a ship sometime in the 1910s and has been the choice for propulsion and power generation, ever since. Since the first model used in ship propulsion, the diesel engine has come a long way with several technological advances. A diesel engine has a particularly high thermal efficiency. Added to it, the higher energy density of the diesel fuel compared to gasoline fuel makes it inherently, the most efficient internal combustion engine. The modern diesel engine also has a very unique ability to work with a variety of fuels like diesel, heavy fuel oil, biodiesel, vegetable oils, and several other crude oil distillates which is very important considering the shortage of petroleum fuels that we face today. In spite of being highly efficient and popular and in spite of all the technological advances, the issue of exhaust gas emissions has plagued a diesel engine. This issue has gained a lot of importance since 1990s when IMO, EU, and the EPA came up with the Tier I exhaust gas emission norms for the existing engine in order to reduce the NOx and SOx. Harsher Tier II and Tier III norms were later announced for newer engines. Diesel fuels commonly used in marine engines are a form of residual fuel, also know as Dregs or Heavy Fuel Oil and are essentially the by products of crude oil distillation process used to produce lighter petroleum fuels like marine distillate fuel and gasoline. They are cheaper than marine distillate fuels but are also high in nitrogen, sulfur and ash content. This greatly increases the NOx and SOx in the exhaust gas emission. Ship owners are trapped between the need to use residual fuels, due to cost of the large volume of fuel consumed, in order to keep the operation of their ships to a competitive level on one hand and on the other hand the need to satisfy the stringent pollution norms as established by the pollution control agencies worldwide. Newer marine diesel engines are being designed to meet the Tier II and Tier III norms wherever applicable but the existing diesel engine owners are still operating their engines with the danger of not meeting the applicable pollution norms worldwide. Here we make an effort to look at some of the measure that the existing marine diesel engine owners can take to reduce emissions and achieve at least levels prescribed in Tier I. Proper maintenance and upkeep of the engine components can be effectively used to reduce the exhaust gas emission. We introduced a pilot program on diesel engine performance monitoring in North America about two years ago and it has yielded quite satisfying results for several shipping companies and more and more ship owners are looking at the option of implementing this program on their ships.


2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Arizal, M. A. A. ◽  
Jaafar, M. N. M.

A research has been done to observe the effect of varying the retainer angle on the performance of oil burner in terms of exhaust gas emissions and temperatures. Retainer was a flame stabilizer used to stabilize the flame, improve mixing between air and fuel and affect the formation of emissions such as carbon monoxide (CO), carbon dioxide (CO2), oxides of nitrogen (NOX), and sulfur dioxide (SO2). These emissions can cause harm to the world ecosystem. One of the methods to reduce emissions was by varying the retainer's blade angle to certain angle that complete the combustion with high efficiencies and less emissions. In this research, an oil burner with four different retainer angles has been investigated using a combustor of one meter length. Tests were conducted using diesel as feedstock. Four different retainer angles used are 15°, 30° (baseline), 45°, and 60° with swirl number 0.2016, 0.4344, 0.7524, and 1.3032. From the experiment, data shown that swirling flow affect the formation of recirculation zone thus provides the aerodynamics blockage to stabilize the flame and emissions reduced due to varying the retainer angles and the best retainer angle was achieved by consider the exhaust gas emission reduction.


Sign in / Sign up

Export Citation Format

Share Document