scholarly journals Synthesis of Cinnamic Acid Based on Perkin Reaction Using Sonochemical Method and Its Potential as Photoprotective Agent

2020 ◽  
Vol 5 (1) ◽  
pp. 54
Author(s):  
Erwin Indriyanti ◽  
Masitoh Suryaning Prahasiwi

<p>Cinnamic acid plays a vital role in the synthesis of other important compounds and as a precursor for the synthesis of commercial cinnamon esters used in perfumery, cosmetics, and pharmaceutical industries. The aim of this research is to synthesize cinnamic acid using sonochemical methods. Cinnamic acid was synthesized using Perkin reaction by reacting 0.05 mole of benzaldehyde with 0.073 mole of acetic acid anhydride and 0.03 mole of sodium acetate as a catalyst in the Erlenmeyer flask and then the mixture was put in a sonicator for 60 minutes at 70 <sup>o</sup>C. The synthesized compound was tested organoleptic properties, and the melting point was measured. The chemical structure was elucidated using FT-IR, H-NMR, and <sup>13</sup>C-NMR. The photoprotective activity was examined from its antioxidant and SPF values. The synthesized compound was found in the form of a shiny white fine crystal which had distinctive odor with a yield of 4.98% and the melting point was found at 133<sup> o</sup>C. In the structure elucidation using FT-IR (the aromatic ring absorption at the wave number 1580 cm<sup>-1</sup> -1600 cm<sup>-1</sup>. The wave number 1625 cm<sup>-1</sup>is an aromatic conjugated alkene group, while wave  number 1689.4 cm<sup>-1 </sup>is a carbonyl group. The wave number 2500 cm<sup>-1 </sup>– 3250 cm<sup>-1 </sup>is an OH carboxylic acid group) , H-NMR (7.410 (<em>m</em>, 5H, Ar-H); 7.425(<em>t</em>, 1H); 7.572 (<em>d</em>, 1H); 8.057 (d, 1H,C=CH) and <sup>13</sup>C-NMR (129.309 ppm; 130.998 ppm; 134.58 ppm; 170.017 ppm) showed that when compared with the standard compound as the reference, the synthesized compound was confirmed to be cinnamic acid. The antioxidant activity test showed that at the concentration of 20 ppm the synthesized compound was able to reduce free radicals by 46.69%. This finding showed that  the synthesized compound had antioxidant activity.</p>

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. Bharathi ◽  
Selvaraj Mohana Roopan ◽  
Abdul Abdul Rahuman ◽  
Govindasamy Rajakumar

Many naturally occurring and synthetic compounds containing dihydrocyanopyridine and cyanopyran moiety show pharmacological properties. The aim of this study is to investigate the larvicidal and antioxidant potential of dihydrophenanthroline-3-carbonitrile derivatives4a–f. A novel series of 2-amino-10-chloro-4,12-diphenyl-1,4,5,6-tetrahydrobenzo[j][1,7]phenanthroline-3-carbonitrile derivatives were synthesized by reacting different substituted acridine chalcones through Michel addition. The compounds were synthesized in excellent yields and the structures were corroborated on the basis of FT-IR,1H NMR,13C NMR, and ESI Mass analysis data. All the synthesized compounds were evaluated for larvicidal activity againstAedes aegyptiandCulex quinquefasciatuslarvae. Furthermore, the antioxidant activity was studied by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay method. From the antioxidant assay, the compound4cwas reported with profound antioxidant potential.


2020 ◽  
Vol 26 (1) ◽  
pp. 112-122
Author(s):  
Shaikha S. AlNeyadi ◽  
Naheed Amer ◽  
Tony G. Thomas ◽  
Ruba Al Ajeil ◽  
Priya Breitener ◽  
...  

AbstractOxidative stress is a causative factor in the pathophysiology of numerous diseases, such as diabetes, atherosclerosis, cancer, and neurodegenerative and cardiovascular diseases. Therapeutic antioxidants are promising candidates for preventing and treating conditions in which oxidative stress is a contributing factor. In this study, we report the design, synthesis and antioxidant activity of six compounds containing the 2-methoxyphenol moiety core structure. The synthesized derivatives were characterized using 1H NMR, 13C NMR, Fourier-transform infrared (FT-IR), and elemental analysis spectroscopy. The antioxidant properties of the compounds were evaluated using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assay. New phenolic acid-derived compounds with antioxidant activity were identified.


Author(s):  
Dipti L. Namera ◽  
Umed C. Bhoya

We have reported some novel 1,3,4-oxadiazole synthesized by conventional method as well as microwave assisted method. The reaction of different substituted cinnamic acid 2a-o with 2-(4-chlorophenyl) acetohydrazide by using phosphoric anhydride as catalyst, yielded a series of 2,5-di-substituted 1,3,4-oxadiazole 6a-o. The structures of all synthesized compounds are well characterized by Mass, FT-IR, 1H NMR, 13C NMR and elemental analysis. After obtaining experimental data regarding the yield and the time taken for the synthesis by both the methods, conventional and microwave assisted method, it was proved that the microwave assisted method is convenient for synthesis of this type of 2,5-di-substituted 1,3,4-oxadiazole 6a-o.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chandravadivelu Gopi ◽  
Magharla Dasaratha Dhanaraju

Abstract Background The main aim of this work was to synthesise a novel N-(substituted phenyl)-2-(3-(hydroxyimino) methyl)-1H-indol-1-yl) acetamide derivatives and evaluate their antioxidant activity. These compounds were prepared by a condensation reaction between 1H-indole carbaldehyde oxime and 2-chloro acetamide derivatives. The newly synthesised compound structures were characterised by FT-IR, 1H-NMR, mass spectroscopy and elemental analysis. Furthermore, the above-mentioned compounds were screened for antioxidant activity by using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods. Result The antioxidant activity result reveals that most of the compounds were exhibiting considerable activity in both methods and the values are very closer to the standards. Among the synthesised compounds, compound 3j, 3a and 3k were shown remarkable activity at low concentration. Conclusion Compounds 3j, 3a and 3k were shown highest activity among the prepared analogues due to the attachment of halogens connected at the appropriate place in the phenyl ring. Hence, these substituted phenyl rings considered as a perfect side chain for the indole nucleus for the development of the new antioxidant agents.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Kobra Nikoofar ◽  
Fatemeh Shahriyari

AbstractA simple, straightforward, and ultrasound-promoted method for the preparation of some highly functionalized tetrahydropyridines reported via pseudo five-component reaction of (hetero)aromatic aldehydes, different anilines, and alkyl acetoacetates in the presence of [N-CH2CO2H-3-pic]+HSO4−, as a novel ionic liquid, in green aqueous medium. The IL was synthesized utilizing simple and easily-handled substrates and characterized by FT-IR, 1H NMR, 13C NMR, GC-MASS, FESEM, EDX, and TGA/DTG techniques. The procedure contains some highlighted aspects which are: (a) performing the MCR in the presence of aqua and sonic waves, as two main important and environmentally benign indexes in green and economic chemistry, (b) high yields of products within short reaction times, (c) convenient work-up procedure, (d) preparing the new IL via simple substrates and procedure.


2009 ◽  
Vol 64 (11-12) ◽  
pp. 798-808 ◽  
Author(s):  
Mona A. Mohamed ◽  
Madeha R. Mammoud ◽  
Heiko Hayen

A new triterpene saponin, named as 23-hydroxy-3α-[O-α-L-1C4-rhamnopyranosyl-(1´´4´)- O-α-L-4C1-arabinopyranosyl-oxy]olean-12-en-28-oic acid O-α-L-1C4-rhamnopyranosyl- (1´´´´´→4´´´´)-O-β-D-4C1-glucopyranosyl-(1´´´´→6´´´)-O-β-D-4C1-glucopyranosyl ester (9), was isolated from the leaves of Bauhinia variegata Linn. In addition, six flavonoid compounds along with two cinnamic acid derivatives were isolated and identified based on their chromatographic properties, and chemical and spectral data (ESI-high resolution-MSn, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, and HMBC). Compound 9 was found to be nontoxic (LD50) and to have significant anti-inflammatory and antinociceptive activities. It also showed a slight antischistosomal activity.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hooshang Hamidian

In the present paper, we report the synthesis and pharmacological evaluation of a new series of azo compounds with different groups (1-naphthol, 2-naphthol, andN,N-dimethylaniline) and trifluoromethoxy and fluoro substituents in the scaffold. All synthesized compounds (5a–5f) showed the most potent mushroom tyrosinase inhibition (IC50values in the range of 4.39 ± 0.76–1.71 ± 0.49 µM), comparable to the kojic acid, as reference standard inhibitor. All the novel compounds were characterized by FT-IR,1H NMR,13C NMR, and elemental analysis.


2009 ◽  
Vol 2009 (7) ◽  
pp. 437-439 ◽  
Author(s):  
Sara Tarighi ◽  
Alireza Abbasi ◽  
Sara Zamanian ◽  
Alireza Badiei ◽  
Mahmood Ghoranneviss

3-Chlorobenzo[b]thiophene-2-carbonyl chloride was synthesised from cinnamic acid and thionyl chloride. The single crystal X-ray structure determination confirmed the earlier proposed structure and the product was further characterised by 1H NMR, 13C NMR and mass spectrometry. The X-ray structure determination revealed two sets of symmetry related molecules along the b-axis that are loosely connected by relatively weak CH…π ( 3.626, 3.628 Å) interactions, giving rise to two infinite chains. The packing structure is dominated by Van der Waals forces between these chains. No significant π–π interactions are found in the crystal structure.


2014 ◽  
Vol 18 (03) ◽  
pp. 188-199 ◽  
Author(s):  
Áron Roxin ◽  
Thomas D. MacDonald ◽  
Gang Zheng

Here we show the facile synthesis of 132-173-bacteriochlorophyllone a (12), with a distinct seven-membered exocyclic F-ring formed by 132-173-cyclization of bacteriopheophorbide a(16). This is the latest reported bacteriochlorin with such an exocyclic F-ring since 1975 (132-173 cyclobacteriopheophorbide a-enol, 11), and is an analog of previously described natural exocyclic F-ring-containing porphyrins (1–4) and chlorins (5–10). The structure of 12 was confirmed using a combination of 1D 1 H NMR, 2D COSY 1 H NMR, Jmod 13 C NMR and HRMS analysis. The biological activity of 12 was explored, and we found that this compound does not possess strong antioxidant activity like its natural product counterparts, but is a capable photosensitizer for photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document