scholarly journals ANALISIS PENGARUH BIJI KARET TERHADAP KUAT TEKAN BETON

2020 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
Fadhila Firdausa ◽  
Raja Marpaung ◽  
Sri Rezki Artini ◽  
Annadiyah Farah Diba ◽  
Vicky Wisma Ria ◽  
...  

<p class="Abstract">The development of technology construction has reached a period of caring for the environment. Many things been developed to support environmentally friendly construction. Itcan be started from the use of a mixture of natural ingredients into a mixture of construction materials. Concrete is a construction material that is often used in Indonesia, given its ease, price, and durabilityAlong with the development of the concrete periods has experienced many advances, one of which is in the drafting of a combined mix of making concrete, and to supporting environmentally friendly concrete, a mixture of natural materials are used as one of the making material of concrete.South Sumatra is one of the islands in Sumatra, which has an abundant plantation of rubber. The large number of rubber plantations makes rubber waste more and more, one of which is rubber seeds. Therefore it is necessary to treat rubber seed waste in order to reduce the amount of rubber seed waste and can be used to improve the economy of the surrounding community.  The rubber itself has many advantages in the industrial field. Utilization of rubber has been widely used, but no one has used rubber seeds as an aggregate substitution material in making a concrete without other chemicals. Therefore this research will discuss the rubber seed mixture as a substitute for coarse aggregate. The material used to make concrete is portland type I cement, coarse and fine aggregate from the Tanjung Raja area, and the rubber seeds used are from the Sembawa area. Coarse aggregate substitution using a mixture of rubber seeds  5%, 10%, 15%, and 20% were tested during the age of concrete of 7 days, 14 days, and 28 days.. The compressive strength of rubber seed substitution with a percentage of 5% shows the most significant compressive strength value of 19.33 Mpa. From the test results of this study it can be concluded that the greater the use of rubber seeds, the lower the compressive strength.</p>

2020 ◽  
Vol 28 (1) ◽  
pp. 106
Author(s):  
Rahelina Ginting ◽  
Winarko Malau

Concrete work is widely used in construction projects now. To get a good quality concrete depends very much on the quality of the constituent materials, namely cement, water, fine aggregate, coarse aggregate, and also the process of working or stirring. In this research, 27 MPa concrete compressive strength will be investigated with various stirring methods (Manual Mix, Molen Mix and Ready Mix). These three methods of stirring certainly have their respective uses in the process, usually Manual, Molen and Ready Mix are used depending on the conditions of the project being worked on. From this test, results are obtained by means of manual stirring, Molen stirring and Ready Mix with compressive strength average: (266,467 kg / cm2) (278,368 kg / cm2) (284,595 kg / cm2). The results of the study stated that the research carried out fulfilled the estimation target 'c = 27 Mpa.


Author(s):  
Nasir Bumulo ◽  
Nur Windawaty Rusnadin

Concrete is a construction material that is widely used in building structutre work in indonesia becouse it has many benefits. Its compactness and cooperation arragement is very influential toward the compressive strength. One factor is the compectness of concrete fine aggregate and coarse aggregate. The aim of this research was to find out compessive strength of concrete at 28 days using sand material zone III with pebbles the size of 20 mm and 40 mm in a normal concrete mix.The reseach was using the quantitaive testing method. The independent variable of this research was the composition of the mixture, and dependent variable was in the form of concrete quality. The control variable was the material being used. The data collection was done by conducting laboratory testing based on SNI and PBI. The data analysis was done by calculating the average of the test results are then compered with SNI and PBI.The result of concrete research with sand material of zone III and gravel of 20 mm and 40 mm was observed at 28 days old showed a compressive strength value of 311,89 Kg / cm2. Then the concrete sample with sand material of zone III and pebble size 40 mm shows the value of compressive strength of 334,46 Kg / cm2. From this result, it can be concluded that the mixture of sand zone III with gravel measuring 40 mm has a value of concrete compressive strength greater than 20 mm.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5353
Author(s):  
Khaled A. Eltawil ◽  
Mohamed G. Mahdy ◽  
Osama Youssf ◽  
Ahmed M. Tahwia

Experimental work was carried out to study new fine aggregate shielding construction materials, namely black sand (BS). The BS effect on the mechanical, durability, and shielding characteristics of heavyweight high-performance concrete (HWHPC) was evaluated. This study aimed at improving various HWHPC properties, concertedly. Fifteen mixtures of HWHPC were made, with various variables, including replacing 10% and 15% of the cement with fly ash (FA) and replacing normal sand by BS at various contents (15%, 30%, 45%, 60%, 75%, and 100%). The test specimens were subjected to various exposure conditions, including elevated temperatures, which ranged from 250 °C to 750 °C, for a duration of 3 h; magnesium sulfate (MS) exposure; and gamma-ray exposure. The effects of elevated temperature and sulfate resistance on concrete mass loss were examined. The results revealed that BS is a promising shielding construction material. The BS content is the most important factor influencing concrete compressive strength. Mixes containing 15% BS demonstrated significantly better strength compared to the control mixes. Exposure to 250 °C led to a notable increase in compressive strength. BS showed a significant effect on HWHPC fire resistance properties, especially at 750 °C and a significant linear attenuation coefficient. Using 10% FA with 15% BS was the most effective mixing proportion for improving all HWHPC properties concertedly, especially at greater ages.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Agnes Yuanita Bintoro ◽  
Arthur Daniel Limantara ◽  
Sigit Winarto

The growing age of the utilization of production can be processed into an environmentally friendly material. It's Rotary to save costs for doing construction activities. Therefore, using fuel for mixed materials, you can reduce the cost and also can produce as an environmentally-friendly road pavement can also absorb air into the soil, so that road pavement is not easily damaged.The purpose of this research is to know the result of concrete from fine aggregate and a coarse aggregate of coconut shell. The object used is the size of a cube with size 15x15x15 cm of 20 samples, consisting of 5 samples for variation. A sample of betonuks at 28 days concrete age.The results of concrete compressive strength and absorption of concrete using a mixture of fine aggregate and aggregate at 28 days for each variable are:Variation 0% obtained compressive strength equal to 18,5 Mpa and absorption power of concrete equal to 13,60%.Variations of 20% coconut shell and 15% of shell powder obtained strong pressure of 11.4 MPa and absorption of 11.69%.Variation of 25% coconut shell and 20% of shell powder obtained strong pressure of 7.6 MPa and absorption of 11.64%.Variations of 30% coconut shell and 25% shell powder obtained strong pressure of 6.7 Mpa and absorption of 10.17% concrete.From these results, it can be concluded that the concrete used is a mixture and a coarse aggregate of coconut shell and kerosene.Keywords: Compressive strength of concrete, absorption, aggregate mix, shell coconut, shell powder, concblock


2021 ◽  
Vol 2 (2) ◽  
pp. 141-149
Author(s):  
Johan Oberlyn Simanjuntak ◽  
Tiurma Elita Saragi ◽  
Ros Anita Sidabutar ◽  
Humisar Pasaribu ◽  
Rido Parulian Simbolon

The need for housing is increasing day by day. This is a factor in the visit to the need for concrete as a housing construction material. The more concrete that is produced, the more cement is needed for the construction. Concrete is a composite material (mixture) of several materials, the main ingredient of which consists of a mixture of cement, fine aggregate, coarse aggregate and water. Utilization of waste tire ash in the concrete mix is one of the alternative uses so that ic can ultimately increase the efficiency of cement savings which takes a long time to increase in high prices. With reference to this, this study uses used waste as a cement additive with a mixture composition of 0%, 3%, 6% and 9%. The test specimens were made using a cylinder with a diameter of 15 cm and a height of 40 cm with 48 specimens produced. The results of the compressive strength test of normal concrete (25.45 MPa), while the concrete with a mixture of 3% used tire ash (28.15 MPa), 6% used tire ash mixture (23.46 MPa) and 9% used tire ash mixture (18.60 MPa). From this research, it can be said that compressive strength of concrete using 3% ash produces the greatest compressive strength of 28.15 MPa.


Author(s):  
Nandy Candra ◽  
Whendy Trissan

Plastic bottle is waste that can be utilized. This research is used as additive in concrete mixtures can provide an alternative to Utilize the waste. Such as waste plastic bottles PET (Polyethylene Terephthalate). Optimizing the utilization of waste plastic bottles PET (Polyethylene Terephthalate) is expected to reduce the waste that pollutes the environment and provide added value.The fiber to be used as an additive in concrete mixtures. The fibers are mixed with fine aggregate, water and PPC cement type I gresik brands. Concrete mix design using SNI 03-2843-2000 about how making plans mixture of normal concrete. Tests using a cylinder measuring 10 cm x 20 cm, each variation using 10 samples consisting of five variations (0%, 5%, 10%, 15%, 20%) and tested at 14 and 28 days in Laboratory Studies Engineering Education building the Faculty of Education University of Palangkaraya.Average compressive strength at 14 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 23:02 MPa; 12:35 MPa; 10.49 MPa; 9.6 MPa; 8.83 MPa. Average compressive strength at 28 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 25.77 MPa; 13.62 MPa; 11.84 MPa; 10.8 MPa; 10:28 MPa


2018 ◽  
Vol 4 (1) ◽  
pp. 91
Author(s):  
Soca Anggoro Wulan ◽  
Iman Satyarno ◽  
Ashar Saputra

Mix design of Self Compacting Concrete or SCC is not straight forward because many parameters control its rheological properties. The case becomes more complicated if high compressive strength is also to be achieved. Therefore simpler approach is used, that is by firstly determining the flow mortar mix which is easier to be designed even with the requirement of ultra-high compressive strength. The mix design of SCC is then determined by simply adding the coarse aggregate with a certain amount of that mortar mix. In this research the ultra-high compressive strength flow mortar was made of Type I cement, 15% of cement weight silica fume, weight ratio of cement and curve No IV sand was 1: 0.35. The water-cementious ratio was 0.22 and the amount of plasticizer was 1.3%, 1.4%, 1.5% and 1.6% of the cement weight. For the SCC, the used coefficient was taken to be 1.4, 1.6, and 1.8 of the volume of that aggregate void for mortars, the aggregate value was at the volume of the remaining count of mortar and its size was 4.8 mm - 9.6 mm. Test results show that the mortar flow ability was 170 mm, 180 mm, 220 mm and 250 mm, where the achieved compressive strength was 83.1 MPa, 96.8 MPa, 111.4 MPa, and 135.5 MPa respectively. Mortar mix with 1.6% super plasticizer was then used for making the SCC and the results show that the concrete flow were 460 mm, 580 mm and 660 mm and the compressive strength were 88.2 MPa, 100.0 MPa, and 97.9 MPa.  It can be concluded that using this simpler approach the SCC can have 580 mm flow and 100 MPa compressive strength


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


Sign in / Sign up

Export Citation Format

Share Document