scholarly journals Analisa Agregat Halus Pasir Zona III Dengan Agregat Kasar Ukuran 20 mm Dan 40 mm Untuk Uji Kuat Tekan Mutu Beton Pada Campuran Beton Normal

Author(s):  
Nasir Bumulo ◽  
Nur Windawaty Rusnadin

Concrete is a construction material that is widely used in building structutre work in indonesia becouse it has many benefits. Its compactness and cooperation arragement is very influential toward the compressive strength. One factor is the compectness of concrete fine aggregate and coarse aggregate. The aim of this research was to find out compessive strength of concrete at 28 days using sand material zone III with pebbles the size of 20 mm and 40 mm in a normal concrete mix.The reseach was using the quantitaive testing method. The independent variable of this research was the composition of the mixture, and dependent variable was in the form of concrete quality. The control variable was the material being used. The data collection was done by conducting laboratory testing based on SNI and PBI. The data analysis was done by calculating the average of the test results are then compered with SNI and PBI.The result of concrete research with sand material of zone III and gravel of 20 mm and 40 mm was observed at 28 days old showed a compressive strength value of 311,89 Kg / cm2. Then the concrete sample with sand material of zone III and pebble size 40 mm shows the value of compressive strength of 334,46 Kg / cm2. From this result, it can be concluded that the mixture of sand zone III with gravel measuring 40 mm has a value of concrete compressive strength greater than 20 mm.

2021 ◽  
Vol 4 (2) ◽  
pp. 159
Author(s):  
Ary Prastowo ◽  
Ahmad Ridwan ◽  
Edy Gardjito ◽  
Zendy Bima Mahardana

Concrete is a building construction material that has an important role. Concrete itself tends to have strong properties in resisting compressive forces, but weak in resisting tensile or flexural forces. The use of additives in concrete is an option to improve the basic properties of concrete. Latex or rubber latex is one of the natural materials that can be used in concrete mixtures. Its adhesive properties can be utilized in improving the quality of concrete. This study aims to determine the compressive strength and flexural strength of concrete with the addition of latex. The research was conducted experimentally by making concrete specimens in the laboratory. The addition of latex by 10% and 30% with a planned concrete quality of fc' 29.5 MPa. The test object used is a cylinder measuring 15x30 cm and a beam measuring 15x15x30 cm. The tests carried out were testing the compressive strength and flexural strength at the age of 28 days. The results showed that the highest compressive strength was at the addition of 10% latex with a value of 9.96 MPa. While the highest flexural strength value obtained was 3.20 Mpa at the addition of 10% Latex or. From these results it can be seen that the addition of latex has not been able to improve the quality of concrete and has not been able to increase the compressive strength or flexural strength of concrete. So that these results can be used as research development or concrete production.


2020 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
Fadhila Firdausa ◽  
Raja Marpaung ◽  
Sri Rezki Artini ◽  
Annadiyah Farah Diba ◽  
Vicky Wisma Ria ◽  
...  

<p class="Abstract">The development of technology construction has reached a period of caring for the environment. Many things been developed to support environmentally friendly construction. Itcan be started from the use of a mixture of natural ingredients into a mixture of construction materials. Concrete is a construction material that is often used in Indonesia, given its ease, price, and durabilityAlong with the development of the concrete periods has experienced many advances, one of which is in the drafting of a combined mix of making concrete, and to supporting environmentally friendly concrete, a mixture of natural materials are used as one of the making material of concrete.South Sumatra is one of the islands in Sumatra, which has an abundant plantation of rubber. The large number of rubber plantations makes rubber waste more and more, one of which is rubber seeds. Therefore it is necessary to treat rubber seed waste in order to reduce the amount of rubber seed waste and can be used to improve the economy of the surrounding community.  The rubber itself has many advantages in the industrial field. Utilization of rubber has been widely used, but no one has used rubber seeds as an aggregate substitution material in making a concrete without other chemicals. Therefore this research will discuss the rubber seed mixture as a substitute for coarse aggregate. The material used to make concrete is portland type I cement, coarse and fine aggregate from the Tanjung Raja area, and the rubber seeds used are from the Sembawa area. Coarse aggregate substitution using a mixture of rubber seeds  5%, 10%, 15%, and 20% were tested during the age of concrete of 7 days, 14 days, and 28 days.. The compressive strength of rubber seed substitution with a percentage of 5% shows the most significant compressive strength value of 19.33 Mpa. From the test results of this study it can be concluded that the greater the use of rubber seeds, the lower the compressive strength.</p>


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2011 ◽  
Vol 4 (4) ◽  
pp. 582-591 ◽  
Author(s):  
M. S. Lorrain ◽  
M. P. Barbosa ◽  
L. C. P. Silva Fº

Quality control of structural concrete has been conducted for several decades based mainly on the results of axial compression tests. This kind of test, although widely used, is not exempt from errors and has some considerable drawbacks that may affect its reliability, such as the need for appropriate and careful specimen conditioning and adoption of adequate capping techniques. For these reasons, it would be useful to have complementary or alternative ways to check compressive strength, in order to improve concrete quality control. The use of a bond test to monitor concrete strength is being proposed by an international group of researchers from France, Tunisia and Brazil as a potential means to this end. Given the fact that the link between bond resistance and concrete strength is already well established, this type of test seems to be a viable alternative to traditional methods. Nonetheless, to check if the underlying principle is sound when used in different circumstances, the group has been gathering data from several studies conducted by different researchers in various countries, with distinct concretes and rebar types. An analysis of the data collected shows that there is a clear and strong correlation between bond resistance and compressive strength, no matter the influence of other variables. This result validates the basic idea of using an Appropriate Pull-Out (APULOT) bond test to assess concrete strength. If the general principle is valid for random data obtained from different studies, the definition of a clear and appropriate test will probably lead to the reduction of experimental noise and increase the precision of the strength estimates obtained using this method.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2021 ◽  
Vol 309 ◽  
pp. 01132
Author(s):  
Raju Suram ◽  
T. Srinivas ◽  
Vegiraju Naresh kumar Varma

The Plastic is a part of our lives due to its daily usage. So, the consumption of plastic is increasing every year. The decomposition of plastic takes more than thousand years because of its non-biodegradable nature. The plastic harms the society and surrounding environment in all aspects. So, the best way to control the pollution posed by the plastic is recycling. The exponential growth in construction industry, the demand for natural aggregates increases but leads to depletion of natural resources. To overcome this issue plastic used as a fine aggregate replacement in concrete. The majority of the waste coming from the plastic bottles (Polyethylene Terephthalate) and food containers (Polypropylene). So, the recycled Polyethylene Terephthalate and Polypropylene used as a fine aggregate in concrete with percentages of 5%,10%,15%. This paper objective is to assess the effect of Polyethylene Terephthalate and Polypropylene on compressive strength and workability. The workability and compressive strength of PET and PP have given good results up to10%and 5%. It has been observed from the test results that 5% and 10% is optimum for Polypropylene (PP) and Polyethylene Terephthalate (PET)as fine aggregate in concrete respectively.


2018 ◽  
Vol 8 (1) ◽  
pp. 42-54
Author(s):  
Achendri M. Kurniawan

Blitar city experienced a fairly rapid development in the field of trade. One of them is handicraftindustry from wood, especially kendangjimbe. The area that is quite famous as a producer ofjimbekendang is Tanggung Village, KepanjenkidulSubdistrict, Blitar City. In this area most of thepeople work as kendang craftsmen, is also a center of handicraft lathe in Blitar City. Basically, Blitarpeople earn from this activity, in this case people can not make good use of the rest of the activity,especially the utilization of ash of burning of mahogany powder. Of the abundant ash of thecombustion of mahogany wood is expected to be used as an additional mixture of lightweightconcrete. The method used in this study using laboratory experiments and guided on SNI 03-0691-2000. Mixture of mahogany ash dust, and know the compressive strength of lightweight brick withdust ash material as added sand material 0%, 25%, 50%. From this comparison can be generated asfollows: The use of ash of dried mahogany ash adds fine aggregate material (sand) in concrete brickmixture at 7 days old for 0% mixture is 3.28 MPa. Strong press for substitution 25% wood ash larger26,37% that is 4,14 MPa and object of test with substitution 50% decrease 12,46% that is 2,87 MPa.Kota Blitarmengalamiperkembangan yang cukup pesat di bidang perdagangan. Salah satunya adalahindustri kerajinan dari kayu, terutama kendang jimbe. Daerah yang cukup terkenal sebagai penghasiljimbe kendang adalah Desa Tanggung, Kecamatan Kepanjenkidul, Kota Blitar. Di daerah ini sebagianbesar orang bekerja sebagai pengrajin kendang, juga merupakan pusat kerajinan bubut di Kota Blitar.Pada dasarnya, orang Blitar mendapatkan dari kegiatan ini, dalam hal ini orang tidak dapatmemanfaatkan sisa kegiatan, terutama pemanfaatan abu pembakaran serbuk mahoni. Dari abu yangmelimpah dari pembakaran kayu mahoni diharapkan dapat digunakan sebagai campuran tambahanbeton ringan. Metode yang digunakan dalam penelitian ini menggunakan eksperimen laboratoriumdan dipandu pada SNI 03-0691-2000. Campuran debu abu mahoni, dan mengetahui kekuatan tekanbata ringan dengan material abu debu sebagai bahan pasir tambahan 0%, 25%, 50%. Dariperbandingan ini dapat dihasilkan sebagai berikut: Penggunaan abu abu mahoni kering menambahbahan agregat halus (pasir) dalam campuran bata beton pada umur 7 hari untuk campuran 0% adalah3,28 MPa. Pers yang kuat untuk substitusi 25% abu kayu lebih besar 26,37% yaitu 4,14 MPa dan objekuji dengansubstitusi 50% turun 12,46% yaitu 2,87 MPa.


Sign in / Sign up

Export Citation Format

Share Document