Emotion Recognition Based on ECG Signals for Service Robots in the Intelligent Space During Daily Life

Author(s):  
Kanlaya Rattanyu ◽  
◽  
Makoto Mizukawa ◽  

This paper presents our approach for emotion recognition based on Electrocardiogram (ECG) signals. We propose to use the ECG’s inter-beat features together with within-beat features in our recognition system. In order to reduce the feature space, post hoc tests in the Analysis of Variance (ANOVA) were employed to select the set of eleven most significant features. We conducted experiments on twelve subjects using the International Affective Picture System (IAPS) database. RF-ECG sensors were attached to the subject’s skin to monitor the ECG signal via wireless connection. Results showed that our eleven feature approach outperforms the conventional three feature approach. For simultaneous classification of six emotional states: anger, fear, disgust, sadness, neutral, and joy, the Correct Classification Ratio (CCR) showed significant improvement from 37.23% to over 61.44%. Our system was able to monitor human emotion wirelessly without affecting the subject’s activities. Therefore it is suitable to be integrated with service robots to provide assistive and healthcare services.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Manab Kumar Das ◽  
Samit Ari

Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.


2021 ◽  
Author(s):  
Talieh Seyed Tabtabae

Automatic Emotion Recognition (AER) is an emerging research area in the Human-Computer Interaction (HCI) field. As Computers are becoming more and more popular every day, the study of interaction between humans (users) and computers is catching more attention. In order to have a more natural and friendly interface between humans and computers, it would be beneficial to give computers the ability to recognize situations the same way a human does. Equipped with an emotion recognition system, computers will be able to recognize their users' emotional state and show the appropriate reaction to that. In today's HCI systems, machines can recognize the speaker and also content of the speech, using speech recognition and speaker identification techniques. If machines are equipped with emotion recognition techniques, they can also know "how it is said" to react more appropriately, and make the interaction more natural. One of the most important human communication channels is the auditory channel which carries speech and vocal intonation. In fact people can perceive each other's emotional state by the way they talk. Therefore in this work the speech signals are analyzed in order to set up an automatic system which recognizes the human emotional state. Six discrete emotional states have been considered and categorized in this research: anger, happiness, fear, surprise, sadness, and disgust. A set of novel spectral features are proposed in this contribution. Two approaches are applied and the results are compared. In the first approach, all the acoustic features are extracted from consequent frames along the speech signals. The statistical values of features are considered to constitute the features vectors. Suport Vector Machine (SVM), which is a relatively new approach in the field of machine learning is used to classify the emotional states. In the second approach, spectral features are extracted from non-overlapping logarithmically-spaced frequency sub-bands. In order to make use of all the extracted information, sequence discriminant SVMs are adopted. The empirical results show that the employed techniques are very promising.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 935 ◽  
Author(s):  
Yeong-Hyeon Byeon ◽  
Sung-Bum Pan ◽  
Keun-Chang Kwak

This paper conducts a comparative analysis of deep models in biometrics using scalogram of electrocardiogram (ECG). A scalogram is the absolute value of the continuous wavelet transform coefficients of a signal. Since biometrics using ECG signals are sensitive to noise, studies have been conducted by transforming signals into a frequency domain that is efficient for analyzing noisy signals. By transforming the signal from the time domain to the frequency domain using the wavelet, the 1-D signal becomes a 2-D matrix, and it could be analyzed at multiresolution. However, this process makes signal analysis morphologically complex. This means that existing simple classifiers could perform poorly. We investigate the possibility of using the scalogram of ECG as input to deep convolutional neural networks of deep learning, which exhibit optimal performance for the classification of morphological imagery. When training data is small or hardware is insufficient for training, transfer learning can be used with pretrained deep models to reduce learning time, and classify it well enough. In this paper, AlexNet, GoogLeNet, and ResNet are considered as deep models of convolutional neural network. The experiments are performed on two databases for performance evaluation. Physikalisch-Technische Bundesanstalt (PTB)-ECG is a well-known database, while Chosun University (CU)-ECG is directly built for this study using the developed ECG sensor. The ResNet was 0.73%—0.27% higher than AlexNet or GoogLeNet on PTB-ECG—and the ResNet was 0.94%—0.12% higher than AlexNet or GoogLeNet on CU-ECG.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enbiao Jing ◽  
Haiyang Zhang ◽  
ZhiGang Li ◽  
Yazhi Liu ◽  
Zhanlin Ji ◽  
...  

Based on a convolutional neural network (CNN) approach, this article proposes an improved ResNet-18 model for heartbeat classification of electrocardiogram (ECG) signals through appropriate model training and parameter adjustment. Due to the unique residual structure of the model, the utilized CNN layered structure can be deepened in order to achieve better classification performance. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrate that the model achieves higher accuracy (96.50%) compared to other state-of-the-art classification models, while specifically for the ventricular ectopic heartbeat class, its sensitivity is 93.83% and the precision is 97.44%.


2020 ◽  
Vol 12 (10) ◽  
pp. 1685 ◽  
Author(s):  
Amin Ullah ◽  
Syed Muhammad Anwar ◽  
Muhammad Bilal ◽  
Raja Majid Mehmood

The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart’s rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients’ acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.


2020 ◽  
Author(s):  
Murside Degirmenci ◽  
Mehmet Akif Ozdemir ◽  
Elif Izci ◽  
Aydin Akan

Abstract Background: Electrocardiogram (ECG) is a method of recording the electrical activity of the heart and provides a diagnostic mean for heart-related diseases. An arrhythmia is any irregularity of heartbeat that causes an abnormality in one’s heart rhythm. Early detection of arrhythmia has great importance to prevent many diseases. Manual analysis of ECG signal is not sufficient for quickly identifying arrhythmias that may cause sudden deaths. Hence, many studies have been presented to developed computer-aided diagnosis (CAD) systems to automatically identify arrhythmias.Methods: This paper proposes a novel deep learning approach to identify arrhythmias in ECG signals. The signals are obtained from MIT-BIH arrhythmia database and are categorized according to five arrhythmia types. The proposed approach identifies arrhythmia classes by using Convolutional Neural Network (CNN) architecture trained by two-dimensional (2D) ECG beat images. CNN architecture is selected due to high image recognition performance. ECG signals are segmented into heartbeats, then each heartbeat is transformed into a 2D grayscale image. The heartbeat images are used as input for the CNN. Results: The proposed CNN model is compared to other common CNN architectures such as LeNet and ResNet-50 to evaluate the performance of our study. Overall, the proposed study achieved 99.7% test accuracy in the classification of five different ECG arrhythmias.Conclusions: Testing results demonstrate that CNN trained by ECG image representations provide outstanding classification performance of arrhythmic ECG signals and outperforms similar network architectures. Hence, the proposed approach provides a robust method for the classification of ECG arrhythmias.


Author(s):  
G. Jayagopi ◽  
S. Pushpa

<span>Heart diseases had been molded as potential threats to human lives, especially to elderly people in recent days due to the dynamically varying food habits among the people. However, these diseases could be easily caught by proper analysis of Electrocardiogram (ECG) signals acquired from individuals. This paper proposes a better method to detect and classify the arrhythmia using 15 features which include 4 R-R interval features, 3 statistical and 6 chaotic features estimated from ECG signals. Additionally, Entropy and Energy features had been gained after converting one dimensional ECG signals to two dimensional data and applied Tetrolet transforms on that.  Total numbers of 15 features had been utilized to classify the heart beats from the benchmark MIT-Arrhythmia database using Support Vector Machines (SVM). The classification performance was analyzed under various kernel functions and different Tetrolet decomposition levels. It is found that Radial Basis Function (RBF) kernel could perform better than linear and polynomial kernels. This research attempt yielded an accuracy of 99.35 % against the existing works. Moreover, addition of two more features had introduced a negligible overhead of time. Hence, this method is better suitable to detect and classify the Arrhythmia in both online and offline.</span>


Author(s):  
Rama Chaudhary ◽  
Ram Avtar Jaswal

In modern time, the human-machine interaction technology has been developed so much for recognizing human emotional states depending on physiological signals. The emotional states of human can be recognized by using facial expressions, but sometimes it doesn’t give accurate results. For example, if we detect the accuracy of facial expression of sad person, then it will not give fully satisfied result because sad expression also include frustration, irritation, anger, etc. therefore, it will not be possible to determine the particular expression. Therefore, emotion recognition using Electroencephalogram (EEG), Electrocardiogram (ECG) has gained so much attraction because these are based on brain and heart signals respectively. So, after analyzing all the factors, it is decided to recognize emotional states based on EEG using DEAP Dataset. So that, the better accuracy can be achieved.


Author(s):  
Satya Ranjan Dash ◽  
Asim Syed Sheeraz ◽  
Annapurna Samantaray

Electrocardiogram (ECG) is a kind of process of recording the electrical activity/signals of the heart with respect to the time. ECG conveys a wide amount of information related to the structure and functions of the heart, its electrical conduction processes. ECG is a diagnostic tool that the doctors and medical professionals use to measure patients' heart activity by paying attention to the electric current flowing in the heart. Due to the presence of noises, it needs to carry out the filtration process. Filtration is the process of keeping the components of the signals of desired frequencies by setting up an “fc” value and removing the components apart from the said “fc” frequency. It is required to eliminate the noise level from the ECG signal, such that the resultant ECG signal must be free from noises. All these techniques and algorithms have their advantages and limitations which are discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document