scholarly journals Mathematical modelling of transients in the electric drive of the turnout of the mono-sleeper type with switched-inductor motor

Author(s):  
S. G. Buriakovskyi ◽  
A. S. Maslii ◽  
L. V. Asmolova ◽  
N. T. Goncharuk

Introduction. The study is devoted to the development of the functionality of a railway track switch by introducing a switched-inductor electric drive. This solution justifies simplifying the mechanical part of the switches by changing the gearbox to a ball-screw and locating the all kinematic line of the switches on the mono-sleeper type. Goal. A study of the mono-sleeper turnout type behaviour to meet modern traffic safety requirements and improve operational reliability factors. Methodology. Based on electric drive theory, a kinematic line of a mono-switch turnout type with nonlinear friction characteristic is presented. Using differential equation theory and Laplace transformation, a mathematic description of a four-phase switched-inductor motor with ball-screw in a mechanical line of a single-mass electromechanical system has been made. A simulation mathematical model of the electric drive of mono-sleeper turnout type as the control system with a switched-inductor motor and nonlinear friction characteristic was built in MATLAB. Results. Simulation modelling of a mathematical model of a mono-sleeper turnout type with a switched-inductor motor and ball-screw gear has been developed and implemented. Studies of dynamics of turnout point movement have shown that, in contrast to the motors used today, the switched-inductor motor makes it possible to simplify the mechanical part of the drive, which leads to reduced time spent on laying and maintenance of turnout points, and therefore makes the design more reliable. The application of PID controller and fuzzy speed controller has shown improved dynamics of turnout point, while the fuzzy PID controller provides better performance of the set values and turnout point movements. Originality. First developed a mathematical model of the electric drive of the mono-sleeper turnout type, taking into account nonlinear friction characteristic, as an object of speed control of turnout point movement, is developed. Practical value. The developed mathematical model of a railway track turnout of the mono-sleeper type with a switched-inductor motor and ball-screw gear enables more efficient use of a microprocessor control system, creation of promising electric motor protection means and control of a turnout point.

2013 ◽  
Vol 411-414 ◽  
pp. 1711-1715
Author(s):  
Bing Hua Jiang ◽  
Li Fang ◽  
Hang Biao Guo

In this paper, taking integrated process and control platform as the background , did the research on mathematical model of boiler liner and parameters on the performance of the control system. First, created a mathematical model of the temperature of the boiler liner. Second, selected the PID controller to control the temperature control system in the case of the PID controller parameters remained unchanged. Finally, changed the boiler parameters, analyzed and compared the simulation waveforms of different boiler parameters in order to get the conclusion that different parameters had different influence on the static stability of the temperature control system and the temperature control system had anti-jamming capability.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xin-hua Liu ◽  
Xiao-hu Chen ◽  
Xian-hua Zheng ◽  
Sheng-peng Li ◽  
Zhong-bin Wang

In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters’ optimization. Finally, a simulation example was provided and the designed controller was proved ideal.


2011 ◽  
Vol 467-469 ◽  
pp. 152-159 ◽  
Author(s):  
Hong Tao Zhang ◽  
Ji Du He ◽  
Jin Ping Liu

This paper introduces the structure and working principles of the automotive electronic throttle control system. After analyzing the non-linear factor of the system, mathematical model of the system is built up. And the working principle of non-linear torque observer is described. Then incremental PID controller and non-linear torque compensator were designed and simulated in the matlab/simulink. From the result, we can see that the control precision of incremental PID controller is poor, and it also easily has an overshoot. However, PID controller based on non-linear torque observer has a better tracking performance. It can meet control requirements very well.


Author(s):  
А. Denisov ◽  
Y. Denisov ◽  
O. Bursala

To stabilize the phase position of the working body of the robotics complex a single-circuit precision electric drive system was developed based on the principle of phase-locked loop. The direct-driven electric drive is made on the basis of brushless direct current motor, which is switched to synchronous mode with minimal discrepancy between the phases of the reference signals and the pulse speed sensor. The phase error signal is fed to the input of the PID controller, which controls the pulse width modulation of the impulses controlling the operation of the power transistors of the autonomous voltage inverter. In a static mode, the control system of the autonomous voltage inverter implements a sinusoidal law of the pulse width modulation of the output pulses. The PID controller and the control system of the autonomous voltage inverter are programmatically implemented on the basis of the controller. In the process of analysing of the stabilization accuracy, the synchronous motor is represented by a second-order linear link, which establishes a relation between the phase deviations of the motor rotor and the stator magnetic field. The autonomous voltage inverter is represented by a zero-order hold whose coefficient of amplification on amplitude is found by the results of the approximation of its output voltage using the Walsh-Fourier series. The analysis of the phase stabilization process is performed on the basis of the state variables method taking into account the perturbations at the moment of load using the program which implements the recurrent procedure. The settings of the PID controller are determined by the variation results when the moment of load changes. Their initial values ​​are determined as a result of optimizing the system in terms of operation speed considering the condition of finite duration processes. It is assumed that there is no moment of load perturbation. The procedure for setting the PID controller parameters to the optimal operation speed mode can also be performed on the basis of neural networks. As a result of the calculations, it was found that with an increase of the load moment by 5%, the maximum deviation of the rotor phase was 0.22 us and 0.03 us of minimum deviation respectively.


2016 ◽  
Vol 8 (5) ◽  
pp. 540-547
Author(s):  
Tomas Eglynas ◽  
Audrius Senulis ◽  
Marijonas Bogdevičius ◽  
Arūnas Andziulis ◽  
Mindaugas Jusis

The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Quay crane in laboratory environment. However, there is still complex control algorithm design and the controller’s parameter estimation problems to be solved. This paper presents mathematical model of the Quay crane trolley mechanism with the suspended cargo. The mathematical model is implemented in Matlab Simulink environment and using Dormand-Prince solving method. The presented model of laboratory quay crane mathematical model is dedicated to parameter estimation of PID controller of closed loop system with the usage of S –form speed input profile. The article includes the dynamic model of the presented system, the description of closed loop system and modeling results. These results will be used as an initial information for the PID parameters estimation in real quay crane control system. The simu-lation of the model was performed using estimated values of controller. The sway influence of the cargo, the usage of the trolley speed input S-shaper and the PID controller was used to control the trolley speed. Jūriniame įvairiarūšiame terminale atliekant konteinerių krovos procesus, vienas iš krantinės kranų valdymo objektų yra vežimėlis. Viena iš problemų, su kuria susiduriama dažniausiai, yra konteinerio svyravimai, kuriuos, be išorinių veiksnių, taip pat sukelia ir vežimėlio judėji-mas. Remdamiesi paskutinių kelerių metų tyrimais, mokslininkai sukūrė įvairių valdymo algoritmų, kurie laboratorinėmis sąlygomis spren-džia atskiras krantinės kranų valdymo problemas. Tačiau kompleksinių ir efektyvių valdymo algoritmų ir jų valdymo sistemos parametrų nustatymo metodai vis dar kuriami ir tobulinami. Šiame darbe sudarytas krantinės krano vežimėlio su kabančiu kroviniu mechanizmo sis-temos matematinis modelis. Šis modelis realizuotas Matlab Simulink aplinkoje ir sprendžiamas taikant Dormand-Prince metodą. Sukurtas laboratorinio krantinės krano valdymo sistemos kompiuterinis modelis skirtas uždarosios valdymo sistemos PID valdiklio parametrams nustatyti, kai užduoties signalui taikomas S formos greičio kitimo profilis. Darbe pateiktas sistemos dinaminis modelis, aprašyta uždaroji valdymo sistema, pateikti kompiuterinio modeliavimo rezultatai, kuriuos planuojama panaudoti kaip pradinę informaciją realaus krano PID valdiklio parametrams derinti. Atlikta simuliacija naudojant nustatytas vertes ir įvertinti krovinio svyravimai taikant S formos greičio kitimo profilį kartu su PID valdikliu vežimėlio greičiui valdyti.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Jia En Foo ◽  
Shin Horng Chong ◽  
Wai Keat Hee ◽  
Ser Lee Loh ◽  
Norhaslinda Hashim

Ball screw mechanisms are widely applied in different industries due to their capability in achieving precise positioning performance as well as its long travel range for positioning, travelling and contouring actions. However, this mechanism exhibits nonlinearities in micro movement. In this paper, a disturbance observer and PD controller (PDDO) is proposed in ball screw mechanism to achieve fast and precise positioning performance. A macrodynamic mathematical model of the mechanism is derived. PDDO controller is designed to achieve fast positioning in micro travel range. The robustness of the controller against mass is examined. The experimental results demonstrated that the PDDO controller achieves better performance in fast tracking (3 Hz) with working range at 100 μm, 1 mm and 3 mm as compared to the PID controller. Besides that, the PDDO controller also demonstrated its robustness in the presence of mass changes.


Author(s):  
Fares Abbas ◽  
Tawfik Al Massoud

Jib Crane is a type of machinery used mainly to raise or lower materials or heavy objects and to carrying them to other places. It is used in construction and in the installation of large machines such as wind turbines and harbors, and is an essential component of integrated production processes. Because of the large loads carried by these cranes it became necessary to know their behavior before investment by studying their movements and studying the vibration of payloads and work to reduce them as much as possible and thus prolong the life of the crane components and increase their efficiency. Hence the need to design a control system to dampen load vibration to reduce the impact of dynamics affecting the parts of the crane. In this research, the mathematical model similar to the mechanical model of the crane was prepared and solving the model using MATLAB program, and then design a proportional integral differential controller for jib crane


2012 ◽  
Vol 463-464 ◽  
pp. 1219-1223
Author(s):  
M. Ebrahimi ◽  
S.A. Jazayeri

The design of control system can be divided into two steps. The plant has to be converting into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller has to be design in order to get the desired response of the controlled system. In this paper, the linear model of a Permanent magnet torque motor (PMTM) is considered and three controllers, digital PID controller with two forms of positional and velocity, a deadbeat controller and pole placement controller method are designed and due to a comparing between their, the best controller for this kind of plants will be chosen.


2011 ◽  
Vol 142 ◽  
pp. 79-82
Author(s):  
Wei Chun Zhang ◽  
Bing Bing Ma ◽  
Xian Bin Du ◽  
Bao Hao Pei ◽  
Jie Chen

Based on analyzing the structure and dynamic characteristics of this system, a dynamical mathematical model is established. To overcome the problems when using fuzzy controller or PID controller respectively and increase precision, a P-fuzzy-PID mode controller and a fuzzy PID controller is designed to control the system. The module of simulink which is a part of MATLAB is used to construct a monolithic mould. The fuzzy logic toolbox is used to construct a fuzzy mould. The results of simulation show that the performance of control becomes better by using this design.


REAKTOR ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 54
Author(s):  
M. Djaeni ◽  
Suherman Suherman ◽  
K. Jalasanti ◽  
R. R. Mukti

The research looks into the performance of Proportional (P), Proportional Integral (PI), and Proportional Integral Derivative (PID) controller to maintain soap concentration. To facilitate the study, the mathematical model of saponification process is derived using information cited from literature. Then the model is validated using experimental data. Based on model, the control system using Proportional (P), Proportional Integral (PI) and Proportional Integral Derivative (PID) are designed. In this case, the constant of each controller is tuned using Ziegler Nichols method. The result showed that the PID controller with Integral Square Error (ISE) of 5,77936 E-08 isthe strongest for disturbance rejection among the others. The performance of PID controlleris also good for set point tracking with ISE of 1.28227 E-05.Key words : control, mathematical model, simulation, saponification


Sign in / Sign up

Export Citation Format

Share Document