scholarly journals Heat Exchange and Hydrodynamic Characteristics of Unified Package of Cold Layer of RAH

Author(s):  
Tetiana Rymar

Heating the air in the boiler air heater with the heat of fuel combustion products performs the functions of increasing the fuel combustion temperature, increasing the temperature level of gases in convective heating surfaces, improving ignition and fuel combustion conditions, increasing boiler efficiency by utilizing waste gas heat, improving fuel quality due to its preliminary supply, etc. However, the peculiarities of the process of heating the air in the air heaters do not allow to achieve a decrease in the temperature of the exhaust gases. This is due to the unfavorable ratio of heat capacities of flue gases and air, as well as corrosion and contamination of the heating surfaces of air heaters. The research of heat transfer processes and hydraulic resistance of unified package of cold layer of RAH is depicted at this work. The graphic dependence of the change in the coefficient of hydraulic resistance and Nu number for unified packages with single line of sheets and simplified profile with corrosion resistance enamel from the Reynolds number for different values of the length of the replaced areas was constructed. The unified packing of the simplified profile has increased by 1.17 times equivalent diameter and is characterized by good operational parameters and takes into account the risk of contamination of heating surfaces due to the enamel coating.

2019 ◽  
Vol 63 (4) ◽  
pp. 241-248 ◽  
Author(s):  
Artur Zaporozhets

The method of fuel quality control is considered, which is based on the using of the oxygen sensor (without sensors of incomplete fuel combustion products). An algorithm for the electric drive of a fan is proposed, which is based on a step changing in the rotation speed. The choice of broadband oxygen sensor as a basis for the development of a fuel combustion control system is determined. In the course of experimental studies, the possibility of reconstructing the boiler by replacing a burner with an installed control system was demonstrated. The commissioning works were carried out with the installed system, the optimum operating conditions of the boiler were determined (with the formation of CO in the flue gases at a minimum level <50 ppm). The technical characteristics of the boiler operation under different loads (from 10 % to 100 %) are considered. Ecological and economic analysis of the developed fuel combustion control system was carried out.


Author(s):  
A. NIKOLAYEV ◽  
◽  
A. M. Mebel ◽  
V. N. Azyazov ◽  
◽  
...  

This research is devoted to the problem of environmental pollution. The study of various pathways that reduce emissions of fuel combustion products into the Earth's atmosphere is still applicable today.


2020 ◽  
pp. 123-126
Author(s):  
В.В. Кожемякин ◽  
Р.А. Иванов ◽  
Е.С. Игнатьева

Работа посвящена расчетно-теоретическому исследованию работы блока инжекторов. Рассмотрен пароводяной струйный аппарат, который применяется в качестве средства циркуляции теплоносителя первого контура. Подвод дополнительного потока осуществляется на цилиндрическом участке с внезапным расширением сечения через перемычку. Для достижения поставленной цели разработана программа для ЭМВ, в которой смоделирована зависимость давления от нагрузки в контуре, а также проведено расчетно-теоретическое исследование влияние гидравлического сопротивления на расход перемычки. В данной работе рассмотрены только рабочие режимы, т.е. все инжекторы работают как насосы. В ходе работы было установлено, что при нагрузке в 30% увеличиваются коэффициенты инжекции пароводяного струйного аппарата, но характер работы перемычек не меняется. Так же было установлено, что расход через перемычку меняется не пропорционально коэффициенту гидравлического сопротивления перемычки. The paper is devoted to the computational and theoretical study of the injector block operation. A steam-water jet apparatus is considered, which is used as a means of circulating the primary circle coolant. The additional flow is supplied on the cylindrical section with a sudden expansion of the cross-section through the bridge. To achieve this goal, a computer program was developed that modeled the pressure dependence on the load in the circuit, and also a theoretical study of the influence of hydraulic resistance on the flow of the jumper was conducted. In this paper, only operating modes are considered, i.e. all the injectors function as pumps. In the process of the research, it was found that at a load of 30%, the injection coefficients of the steam-water jet apparatus increase, but the nature of the work of the jumpers does not change. It was also found out that the flow rate through the jumper does not change in proportion to the coefficient of hydraulic resistance of the jumper.


2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


Author(s):  
Aleksey Bal'chugov

A criterion equation for the coefficient of hydraulic resistance of a layer of regular packing was ob-tained, and a dependence was obtained that connects the hydraulic resistance of a dry and irrigated packing.


Author(s):  
Prabir Basu ◽  
Cen Kefa ◽  
Louis Jestin

Author(s):  
M. H. Kamarudin ◽  
K. P. Thiagarajan ◽  
A. Czajko

It is common practice to accompany offshore pipelines by smaller diameter service lines or umbilicals to create a bundle. This gives rise to the so-called piggyback configuration. The flow behavior around the bundle is not well-known, leading to concerns on the stability of the configuration. This paper investigates the influence of the piggyback on the hydrodynamic loadings on the bundle in wave plus current condition using Computational Fluid Dynamics (CFD). Key parameters of the configuration that were investigated were the orientation of the smaller pipe with respect to the main pipeline and the flow conditions (different Keulegan-Carpenter numbers). The gap between the seabed and the main pipe was set to zero for all cases investigated. It was found that the hydrodynamic characteristics of the main pipe were significantly influenced by the presence of the piggyback. The numerical results also showed that the orientation of the piggyback plays an essential role in determining the drag, lift and inertia coefficients for the bundle. This phenomenon is explained by examining the vortex flow patterns around the cylinders. It is shown that the established industry practice of assuming the hydrodynamic characteristics of the bundle to be the same as an equivalent diameter cylinder may underestimate the forces on the bundle, and lead to a non-conservative design.


Author(s):  
Fikret A. Aliev ◽  
Nevazi A. Ismailov ◽  
Atif A. Namazov

AbstractIn this work the process of gas-lift in the oil production is considered. The process is described by partial differential equations of hyperbolic type. A small parameter is introduced, which is the inverse of the well depth. Gas-lift process is investigated behind the front of sound wave. The initial system of hyperbolic equations is reduced to the nonlinear ordinary differential equation (NODE) of the first order relatively to the gas volume and gas liquid (GLM), which depends on the coordinates of wells and hydraulic resistance coefficient (HRC). An asymptotic solution of NODE is obtained and this solution is calculated at the point. It is shown that for the determination of HRC statistical data of well is required (volume of injected gas at the wellhead of the annular space and GLM at the end of lift (debit)). Then on the basis of these results, by constituting the corresponding functional, which is the quadratic deviation of the statistics and calculated asymptotic solutions, the functional gradient is derived that allows one to calculate HRC in first approximation relative to small parameter. An example for the specific case from the practice shows that HRC in first approximation differs from the value on the order of 10


2000 ◽  
Vol 90 (5) ◽  
pp. 817-822 ◽  
Author(s):  
A. A. Samaryan ◽  
A. V. Chernyshev ◽  
A. P. Nefedov ◽  
O. F. Petrov ◽  
Yu. M. Mikhailov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document