scholarly journals Feed additives in the diet of high-producing dairy cows

2021 ◽  
Vol 19 (4) ◽  
pp. 5-16
Author(s):  
Daniel Radzikowski ◽  
◽  
Anna Milczarek ◽  
Alina Janocha ◽  
Urszula Ostaszewska ◽  
...  

Improvement of the genetic value of cows, enabling increasingly high milk yield, requires increasingly modern feeding. Therefore, in addition to high-quality bulky feed and concentrate feed, specialized feed additives are being introduced to the diet of high-producing dairy cows. The available additives (rumen-protected essential ingredients, phytobiotics, probiotic, prebiotic and others) have a broad spectrum of activity, increasing production efficiency, protecting against metabolic disease, and improving the reproductive parameters and health of the herd. It should be borne in mind, however, that only rational use of feed additives in the diet of cows is conducive to their longevity, which is one of the most important factors improving the economic outcomes of milk production.

1980 ◽  
Vol 31 (6) ◽  
pp. 1147 ◽  
Author(s):  
GL Rogers ◽  
RHD Porter ◽  
T Clarke ◽  
JA Stewart

Thirty dairy cows in early lactation were individually fed in stalls on high quality pasture (Lolium peuenne, Dactylis glomerata and Trifoliium repens) and given either formaldehyde-treated casein or untreated casein at 1000 g/day. Nitrogen content and apparent digestibility of herbage nitrogen was 2.8 and 70.4% respectively. Treated casein significantly increased the yield of milk by 13 % and milk protein by 15 % although neither supplement affected milk composition. High-producing cows showed a greater response to formaldehyde-treated casein, with increases in milk yield of 0.5 �0.14 kg per kg increase in level of milk production. Increases in milk synthesis were associated with increased efficiency in utilization of nutrients and not with changes in pasture intake. The results support the hypothesis that formaldehyde-treated casein provided more protein for duodenal digestion and thereby increased the supply of essential amino acids which were limiting milk production. It is concluded that milk synthesis in cows fed solely on high quality pasture in early lactation is limited by the amount of protein absorbed post-ruminally.


2011 ◽  
Vol 11 (4) ◽  
pp. 531-545 ◽  
Author(s):  
Magdalena Łopuszańska-Rusek ◽  
Krzysztof Bilik

Influence of Pre- and Postpartum Supplementation of Fibrolytic Enzymes and Yeast Culture, or Both, on Performance and Metabolic Status of Dairy CowsThe aim of the study was to determine the degree to which feeding total mixed rations (TMR) with fibrolytic enzymes and/or live yeast cultures to periparturient dairy cows will affect feed intake and conversion, milk yield and chemical composition, and metabolic and reproductive parameters of the cows. The experiment was conducted from 3 weeks before calving to 10 weeks of lactation on 36 Polish Red-and-White Holstein-Friesian (PHF Red) cows assigned to four analogous groups, 9 animals each. Cows from the control group (C) were fed an unsupplemented diet, those from group E received a diet supplemented (15 g/day) with enzyme preparation (Fibrozyme™) containing a blend of active xylanase and cellulase, cows from group D a diet with yeast preparation (Yea - Sacc1026) supplemented (10 g/day) with Saccharomyces cerevisiae1026 live yeast culture, and cows from group ED were fed a diet supplemented with a mixture (25 g/day) of both feed additives. The preparations were added to the concentrate included in the TMR diet. It was found that groups E and D showed a tendency towards higher dry matter and nutrient intake compared to group C. In groups E, D and ED there was also a tendency towards higher milk yield (by about 4-12% in the first 3 weeks of lactation) and slightly higher crude protein content (by an average of 0.16, 0.09 and 0.04 percentage units, respectively), without a clear effect on the other milk constituents. Significantly (P<0.05) lower milk urea content was also noted in group E compared to group C. Cows from groups E and D compared to group C, were characterized by better (P<0.05) efficiency of feed and nutrient conversion for kg milk production, especially during the first three weeks after calving. The experimental cows also showed a tendency towards improved blood metabolic profile, especially decreased levels of beta-hydroxybutyric acid (BHBA) and reduced activity of aspartate aminotransferase (AST). The investigated preparations had no significant effect on the body weight, body condition and reproductive parameters of the cows.


2019 ◽  
Vol 15 (02) ◽  
pp. 39-41
Author(s):  
H H Panchasara ◽  
A B Chaudhari ◽  
D A Patel ◽  
Y M Gami ◽  
M P Patel

The study was conducted to evaluate the effect of feeding herbal galactogogue preparation (Sanjivani biokseera) on the milk yield and milk constituents in lactating Kankrej cows. Thirty-two lactating Kankrej cows in their 1st to 6th lactation were taken for the experiment from 3 days after calving up to 52 days postpartum. All the animals were fed as per the standard seasonally available roughages and concentrates to meet their nutritional requirements. The cows were randomly divided into two uniform groups of 16 cows in each according to initial milk yield and milk composition. The animals in group-I were not given any supplement and served as control. The animals in group-II were given Sanjivani biokseera (Naturewell Industries) @ 60 g per day for 1-month, commencing 3 days after calving, in addition to the usual feeds/fodders. A clear difference was observed in milk yield from day 8 onward of experiment between groups with significant (plessthan0 0.05) higher values from day 16-52 in cows fed herbal galactogogue as compared to control, but no such distinct effect on milk constituents was observed on day 52 when analyzed. The use of herbal galactogogue significantly (p lessthan 0.05) increased the overall average of 52 days milk production, which was 9.34 ± 0.21 lit/day in supplemented as compared to 7.75 ± 0.26 lit/day in control animals. It was concluded that herbal galactogogue (Sanjivani biokseera) could increase milk yield in lactating dairy cows through its galactopoetic property and improved rumen environment.


1995 ◽  
Vol 75 (4) ◽  
pp. 625-629 ◽  
Author(s):  
R. R. Corbett ◽  
L. A. Goonewardene ◽  
E. K. Okine

The effect of substituting peas for soybean and canola meals as a protein source in a high-producing dairy herd was studied in 66 Holstein cows, divided into two groups based on stage of lactation, parity, level of milk production and days in milk. Two 18.5% crude protein grain concentrate diets were formulated based on the nutrient analyses of the forages available. The control grain mix contained standard protein sources, principally soybean and canola meal (SBM\CM) while the test grain mix was formulated to contain approximately 25% field peas as the major source of protein. Both grain rations were formulated to the same nutrient specifications and balanced for undegradable protein. The duration of the trial was 6 mo during which grain feeding levels were adjusted monthly based on milk yield. For cows in early lactation, 4% fat-corrected milk yield was higher (P < 0.05) for cows fed pea based concentrates (31.3 kg d−1) than for cows fed SBM\CM supplement (29.7 kg d−1). Fat-corrected milk yield was not affected by source of protein in mid- and late-lactation cows. Fat-corrected milk production was not different (P > 0.05) for cows fed SBM\CM compared with cows fed the pea supplement when cows across all stages of lactation were included in the analyses. Milk fat percent was significantly higher (P < 0.05) for early- and mid-lactation cows fed the pea supplement. The results suggest that peas can be substituted for SBM\CM as a protein source for high-producing dairy cows. Key words: Dairy cow, pea, soybean and canola meal supplement, undegradable protein, milk production


Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 684-694
Author(s):  
Lenka Krpálková ◽  
Niall O’Mahony ◽  
Anderson Carvalho ◽  
Sean Campbell ◽  
Gerard Corkery ◽  
...  

Identification of the associations of cow feed efficiency with feeding behaviour and milk production is important for supporting recommendations of strategies that optimise milk yield. The objective of this study was to identify associations between measures of feed efficiency, feed intake, feeding rate, rumination time, feeding time, and milk production using data collected from 26 dairy cows during a 3 month period in 2018. Cows averaged (mean ± standard deviation) 2.2 ± 1.7 lactations, 128 ± 40 days in milk, 27.5 ± 5.5 kg/day milk, 1.95 ± 0.69 kg feed/1 kg milk—the measure used to express feed conversion ratio (FCR), 575 ± 72 min/day rumination time, and 264 ± 67 min/day feeding time during the observation period. The coefficient of variation for rumination time (min/d) was 12.5%. A mixed linear model was selected for analyses. The most feed inefficient cows with the highest FCR (≥2.6 kg feed/1 kg milk) showed the lowest milk yield (24.8 kg/day), highest feed intake (78.8 kg), highest feeding rate (0.26 kg/min) and BCS (3.35 point). However, the relative milk yield (milk yield per 100 kg of body weight) was the highest (4.01 kg/day) in the most efficient group with the lowest FCR (≤1.4 kg feed/1 kg milk). Our study showed that the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk) had the highest rumination time (597 min/day; p < 0.05), feeding time (298 min/day; p < 0.05), rumination/activity ratio (4.39; p < 0.05) and rumination/feeding ratio (2.04; p < 0.05). Less active cows (activity time 164 min/day; p < 0.05) were the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk). The behavioural differences observed in this study provide new insight into the association of feed behaviour and feed efficiency with milk performance. Incorporating feeding behaviour into the dry matter intake model can improve its accuracy in the future and benefit breeding programmes.


1978 ◽  
Vol 45 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Y. L. P. Le Du ◽  
R. D. Baker ◽  
J. M. Barker

SummaryTwo experiments with dairy cows and one with suckler cows and their calves were conducted to examine the use of secretion rate measurements for estimating total milk production. In the first experiment both 4- and 6- h intervals between measurements gave similar estimates of total 7-d milk yield. The second experiment compared estimated and measured milk composition as well as yield. Milk and solids-not-fat yields were underestimated with dairy cows as a result of an extended milking interval before measurement. However, fat yield was overestimated, indicating that all residual milk was not removed at the first oxytocinaided milking. It was concluded that for the beef cow, previous interval effects would be eliminated by the frequency of calf suckling, but that residual milk effects might cause a 3–6% and a 16% overestimation of milk and fat yields respectively.In the third experiment, the milk yield of suckler cows was estimated from measurements of secretion rate and from changes in calf weight; good agreement was obtained provided there were at least 3 consecutive controlled sucklings.


2021 ◽  
Vol 13 (2) ◽  
pp. 22-27
Author(s):  
Ivan Imrich ◽  
Róbert Toman ◽  
Martina Pšenková ◽  
Eva Mlyneková ◽  
Tomáš Kanka ◽  
...  

The aim of this study was to evaluate the influence of environmental housing conditions on the milk yield of dairy cows. Measurements were taken in the summer period from June to September 2020 and in the winter period during January 2021 on a large-capacity farm of Holstein Friesian cattle. Cows were housed in free stall barn with the lying boxes and selected during the second or third lactations, in the summer period from the 51st day to the 135th day and in the winter period from the 64th day to the 120th day of lactation. The average temperature in the housing was 23 °C in summer, and 7.05 °C in winter. The average THI (thermal humidity index) value in summer was 70.43, but during the day the THI values sometimes reached 75. The dairy cows were therefore exposed to heat stress during summer. Increasing THI and temperature values negatively affected the milk yield, as there was a negative correlation between both THI and milk yield (r = -0.641; p <0.01) and temperature and milk yield (r = -0.637; p <0.01). Milk production in winter was at 58.77 kg per day and in summer at 49.55 kg per day. In the summer, the milk had a significantly lower content of fat (p <0.05), proteins (p <0.001), lactose (p <0.001), minerals (p <0.001) and conversely, a higher number of somatic cells (p <0.01). These results show that worse environmental conditions during the summer negatively affected the level of milk yield and the composition of the cows’ milk.


Author(s):  
Rajalaxmi Behera ◽  
Ajoy Mandal ◽  
Saroj Rai ◽  
M. Karunakaran ◽  
Mohan Mondal ◽  
...  

Background: Genotype environment interaction plays vital role in animal productivity. Heat stress is one of the major environmental stressor affecting milk production and measured in terms of temperature humidity index (THI). Indian milk industry largely depends on crossbred cows bearing different degree of exotic inheritance. Thus, the role of genotype (genetic group) of the crossbred cows and environment (THI) interaction plays vital role in Indian climate which is mostly tropical in nature. Therefore, study was undertaken to examine the existence of genetic group × THI in crossbred dairy cows reared at institute herd of ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal. Methods: A total of 12364 records each of monthly milk yield (MMY) and average daily milk yield in a month (AMY) of crossbred cows spanned over twenty two years (1994-2015) and weather parameters(temperature and relative humidity) for the corresponding years were collected from institute records. The data were classified into 8 genetic groups according to the genetic composition and 3 THI groups (THI less than 72, THI 72-78 and THI above 78). The interaction model was used to study the G×E interaction study using least squares analysis. Result: Effect of non-genetic factors (parity, period of calving and stage of lactation) was found to be highly significant (P less than 0.01) and genetic group × THI was significant (P less than 0.05) of on both MMY and AMY. Genetic group bearing 50% Jersey and 50% Red Sindhi or Tharparkar were the most heat tolerant breeds. Jersey crossbred cows were more heat tolerant than Holstein crossbred cows. Crossbred cows with 50% Jersey inheritance performed better than higher Jersey inheritance during periods of THI above 72.


2007 ◽  
Vol 2007 ◽  
pp. 148-148
Author(s):  
A. Heravi Moussavi ◽  
M. Danesh Mesgaran ◽  
T. Vafa

Reproduction and milk production are the principal factors that are influencing dairy farm profitability. The dairy industry in Iran has changed dramatically in the last decade. The shift toward more productive cows and larger herds in Iran is associated with a decrease reproductive efficiency (Heravi Moussavi et al., 2004). Increased knowledge about the principal causes of reduced fertility is essential. The root cause of the declining fertility is probably a combination of a variety of physiological and management factors that have an additive effect on reproductive efficiency. Dairy cattle are inseminated and pregnancy is established while dairy cows are lactating. Based on the analyses of large datasets, there is clearly an antagonistic relationship between milk production and reproduction in dairy cattle (Lucy, 2001). It was shown that the hazard ratio for cumulative first 60-day milk yield and conception in high producer cows was 8 percent less than the others and also high milk yield was a risk factor for several reproductive disorders (Grohn and Rajala-Schultz, 2000). The objective of this study was to evaluate the effect of first 60-day cumulative milk yield on days open in Iranian Holstein dairy cows.


Sign in / Sign up

Export Citation Format

Share Document