scholarly journals Comparative Analysis of the Head Loss of Two Centrifugal Pumps in a Fluid Test Laboratory

2020 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Ridho Choirul Anam ◽  
Edi Widodo ◽  
Iswanto ◽  
A’rasy Fahruddin

The purpose of this study was to determine the characteristics of the two centrifugal pumps using the same circuit and to obtain the resulting value, namely head, discharge, pump power, efficiency of the two pumps. And variations in valve opening settings used are full valve openings, valve openings 2/3, and valve openings 1/3 which have different coefficients at each valve opening. This research method was carried out experimentally. The fluid used is water, fluid pressure measurement using a pressure gauge to measure the pressure side (discharge) and a vacuum pressure gauge to measure the pressure which is relatively lower than the atmospheric pressure for the pump on the suction side (suction) and using a flow meter to determine the volume or discharge water used. The results of this centrifugal pump test equipment research found that the working pump shows that the resulting discharge affects the head value, pump power, and pump efficiency obtained, the higher the total head value, the smaller the resulting discharge. However, this centrifugal pump test equipment can be used for fluid practicum activities in the mechanical engineering department in the mechanical laboratory.

2018 ◽  
Vol 20 (2) ◽  
pp. 29-35
Author(s):  
Adam Hafizar Pohan

This study was conducted to identify the performance of centrifugal pump series configuration and parallel configuration experimentally and Ansys simulation. In the previous study, the performance of centrifugal pumps was calculated by varying the valve opening. In this study researchers varied motor rotation of 1000 rpm, 1200 rpm, 1400 rpm, 1600 rpm and 1800 rpm with open valve 100%. The results show that series configuration has higher head value than parallel configuration. While the parallel configuration has a higher capacity value than the series configuration. The highest pump efficiency for this pump performance test is in series configuration of 1800 rpm is 83.4% for experimental and 85% for simulation. While the lowest pump efficiency is in parallel configuration pumps of 1800 rpm with an efficiency 14.1% for experimental and 15.5% for simulation.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Khaled Alawadhi ◽  
Bashar Alzuwayer ◽  
Tareq Ali Mohammad ◽  
Mohammad H. Buhemdi

Since centrifugal pumps consume a mammoth amount of energy in various industrial applications, their design and optimization are highly relevant to saving maximum energy and increasing the system’s efficiency. In the current investigation, a centrifugal pump has been designed and optimized. The study has been carried out for the specific application of transportation of slurry at a flow rate of 120 m3/hr to a head of 20 m. For the optimization process, a multi-objective genetic algorithm (MOGA) and response surface methodology (RSM) have been employed. The process is based on the mean line design of the pump. It utilizes six geometric parameters as design variables, i.e., number of vanes, inlet beta shroud, exit beta shroud, hub inlet blade draft, Rake angle, and the impeller’s rotational speed. The objective functions employed are pump power, hydraulic efficiency, volumetric efficiency, and pump efficiency. In this reference, five different software packages, i.e., ANSYS Vista, ANSYS DesignModeler, response surface optimization software, and ANSYS CFX, were coupled to achieve the optimized design of the pump geometry. Characteristic maps were generated using simulations conducted for 45 points. Additionally, erosion rate was predicted using 3-D numerical simulations under various conditions. Finally, the transient behavior of the pump, being the highlight of the study, was evaluated. Results suggest that the maximum fluctuation in the local pressure and stresses on the cases correspond to a phase angle of 0°–30° of the casing that in turn corresponds to the maximum erosion rates in the region.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Spyridon D. Kyparissis ◽  
Dionissios P. Margaris

Passive flow control techniques are used to improve the flow field and efficiency of centrifugal pumps and turbomachines, in general. An important phenomenon that mechanical engineers have to take into account is cavitation. It leads to the decrease of the pump performance and total head. In the present experimental study, a centrifugal pump is investigated in cavitating conditions. A passive flow control is realized using three different blade leading edge angles in order to reduce the cavitation development and enhance the pump performance. The experiments are carried out in a pump test rig specially designed and constructed, along with the impellers. The head drop and total efficiency curves are presented in order to examine the effect of the blade leading edge angle on the cavitation and pump performance. Finally, the vapour distribution along with the blades is illustrated for the tested blade leading edge angles.


Author(s):  
Jianping Yuan ◽  
Rong Jin ◽  
Shujuan Li ◽  
Longyan Wang ◽  
Aixiang Ge

In order to research the influence laws of the main geometrical parameters of auxiliary impeller and different operation conditions on the centrifugal pump with an auxiliary impeller, which aimed to act as dynamic seal, the orthogonal experiment was designed with four factors and three values. The factors respectively are auxiliary impeller axial clearance, blade width, outlet diameter and blade number. With simulation by Fluent, major and minor factors were investigated which influence the performance of the centrifugal pump with an auxiliary impeller. The cases with optimization sealing pressure value and optimization efficiency were obtained and it was proved by the experimental results. Then, two optimization cases and the original case were simulated and analyzed. The research results show that the major factor of auxiliary impellers for the pump efficiency is the outlet diameter. For sealing pressure head of auxiliary impellers, the major factor is the outlet diameter of auxiliary impeller and the axial clearance and blade number of the auxiliary impeller are secondary important factors. For the optimization of centrifugal pumps with an auxiliary impeller, numerical orthogonal tests can replace actual orthogonal tests.


Author(s):  
Jiangfeng Fu ◽  
Huacong Li ◽  
Ding Fan ◽  
Wenbo Shen ◽  
Xianwei Liu

This paper was presented a method of integrated loss model by considering all kinds of loss type in centrifugal pumps. The geometric structure and loss mechanism of the flow parts in the centrifugal pump were analyzed, such as suction chamber, impeller, vaneless diffuser chamber, volute type water collecting chamber and outlet diffusion section. The hydraulic loss model, volume loss model, friction loss and mechanical loss model of centrifugal pump were established respectively by combining the flow theory. Finally, an integrated loss model of centrifugal pump was constructed, which can establish the relationship between the 12 main design parameters and pump efficiency of the centrifugal pump. Then the performance prediction of an aeroengine fuel centrifugal pump was carried out based on the loss model, and the loss model predictions were compared with the experimental data and CFD simulation performance prediction data. Simulation results show that:The efficiency predicted value relative error of centrifugal pump is less than 2.8% between the loss model and the experimental data. The computational efficiency of CFD is less than 4.4% compared with the experimental data in the design condition. The relative error is about 1.6% between the CFD method and the loss model which shows that the loss model predicts efficiency accuracy is better than the CFD method. It shows that this method can be used to predict the efficiency performance of centrifugal pump under design process.


Author(s):  
Susanta K. Das

Centrifugal pumps vane geometry plays an important role in pump’s overall performance. Thus, to know the impeller vane geometry effects on the performance of a centrifugal pump are essential from pump’s design point of view. In this study, an experimental investigation is carried out to judge the impeller vane geometry effects on the performance of a centrifugal pump. The performance of three different impeller vane geometries is evaluated in this investigation. To acquire pump performance and characteristics curves, inlet and outlet valves were manually adjusted and the pump’s rpm were varied remotely through computer control. The pressure data were obtained via installed flow rotameter for different flow rates with constant pump speed – 1800 rpm. Experimental data were used to calculate different physical parameters, such as the pump head, water horsepower — the power added to the fluid, power input to the pump–brake horse power, and pump efficiency for each of impeller vane geometries. The pump’s performance curves and the system curves were then plotted for each of the vane geometries. The results show that the pump performance as well as efficiency varies significantly for each of the impeller vane geometries. The results help to understand how to determine appropriate operating conditions and design parameters for different impeller vane geometries for obtaining optimized pump performance.


Author(s):  
Yun Xu ◽  
Lei Tan ◽  
Shuliang Cao ◽  
Wanshi Qu

Optimization design of centrifugal pumps involving multiple parameters and objectives is a complicated research topic. The orthogonal method is introduced in the present study to find a high efficiency and low cost way in the optimization process of a centrifugal pump. A orthogonal table designation L16(45) is established, in which 16 individuals of impellers are generated with five design parameters: blade wrap angle, blade angles at impeller inlet and outlet, blade leading edge position, and blade trailing edge lean varying at four levels for each parameter. To realize the multiobjective optimization of both pump efficiency and cavitation performance, an integrated factor considering the weight of two objectives is introduced. On the basis of validated computational fluid dynamics (CFD) technique, the range analysis gives the influence order of five parameters and also determines the value of each parameter. Finally, the optimal centrifugal pump is obtained with remarkable superiority on the efficiency of 3.09% rise and cavitation performance of 1.45 m promotion in comparison with the original pump.


Author(s):  
B. Dolle ◽  
F.-K. Benra ◽  
D. Brillert ◽  
H. J. Dohmen

Further improving efficiency and expanding the working range of centrifugal pumps are major development targets. Therefore, theoretical education for engineering students is essential to gain knowledge about the practical performance of these machines. Based on the strong interdependency between theoretical and practical teaching content, experimental laboratories represent an excellent method to combine both. To offer such experiments, a test rig with a three stage centrifugal pump was assembled in the past. The rising number of students and time-limited access to the test rig resulted in groups of 20 students for each experimental run. A novel tele operative lab is developed to reduce the group size and thereby improve educational quality. This remote lab provides a global, time independent access to the test rig. As a consequence of the advanced flexibility, group sizes of maximum 5 could be realized. Additionally, the absence of a supervising assistant, leads to an improved self-prepared and autonomous working of the students.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
YunFei Chen ◽  
Jianping Yuan ◽  
Yin Luo ◽  
Wenqi Zhang

To effectively predict the faults of centrifugal pumps, the idea of machine learning k-nearest neighbor algorithm (KNN) was introduced into the traditional Mahalanobis distance fault discrimination, and an improved centrifugal pump fault prediction model of KNN based on the Mahalanobis distance is proposed. In this method, the Mahalanobis distance is used to replace the distance function in the conventional KNN algorithm. Grid search and cross-validation are used to determine the optimal K value of the prediction model. A centrifugal pump test rig was established to solve three common faults of centrifugal pumps: cavitation, impeller damage, and machine seal damage, and the method was verified. The results show that this method can effectively distinguish the specific fault types of centrifugal pumps based on vibration signals, and the fault prediction accuracy of the off-balance condition is up to 82%. This study provides a novel idea and method for centrifugal pump fault prediction and diagnosis and avoids the interaction between parameters when monitoring multiple parameters.


Author(s):  
Linda Sadik ◽  
Badih Jawad ◽  
Munther Y. Hermez ◽  
Liping Liu

Abstract Optimizing the high efficiency design of centrifugal pumps requires a detailed understanding of the internal flow. The prediction of the flow inside the pump can be acquired by understanding the rotatory motion and the three-dimensional shape of the impellers, as well as its fundamental unsteady behavior. The flow inside a centrifugal pump is three-dimensional, unsettled and always associated with secondary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow, known as recirculation, starts to begin. Inside this, the separation of flow increases, which creates vortices and cause local pressure to decrease, which induces cavitation. This phenomenon of recirculation will increase the Net Positive Suction Head Required (NPSHR). Improving the suction performance continues to remain a vital and continuous topic in the development and application of centrifugal pumps. In this research, the focal point is to enhance the pump suction performance under low flow rates by modifying the impeller design. This research entails a numerical simulation investigation on the addition of three different designs, each consisting of two cylindrical disks at the impeller inlet suction. It is hypothesized that these modifications will assist suppressing the recirculation phenomenon. The turbulent flow within the centrifugal pump was analyzed by applying the Reynolds-Averaged Navier-Stokes equations and the k–ϵ equations for turbulence modelling. The computational domain consists of the inlet, impeller, diffuser and outlet. Analysis of ΔP, torque data and pump efficiency was conducted. The application of CFD solvers to predict pump performance resulted in reduced prices for testing as well as pump development time. The numerical simulation concluded that placing 3-D multi-cylindrical disks at the impeller inlet section improved the centrifugal pump performance under low flow rates. The model design 1 resulted in a pump efficiency improvement of about 5% at low flow rates by lowering the amount of flow leaking back (re-circulation) through the internal suction.


Sign in / Sign up

Export Citation Format

Share Document