scholarly journals Perancangan Mekanisme Pelurusan Kawat SAE 304 (UNS S30400) Galvanized Menggunakan Prinsip Pengerolan

2021 ◽  
Vol 5 (2) ◽  
pp. 1-7
Author(s):  
Herman Susanto ◽  
Sunardi Tjandra

Wire is a complement material on the manufacturing product. Therefore, the wire processes usually bestowed to the middle-low industry. Cutting and straightening wire processes are the most basic process for wire materials. In the middle-small industry, demand of wire materials is 150 kg per day. Seeing this potential, the design of a wire straightening mechanism for middle-low industries is necessary to maximize productivity. The main purpose of wire straightening mechanism design is calculating roll diameters and placement to obtain appropriate rolling force. In designing this wire straightening mechanism, the raw materials are used 3 mm SAE 304 (UNS S30400) Galvanized. The rolling method used in this mechanism is Three-Roll Bending. The empirical method is used on this analysis. Based on the analytical results, roll used on this mechanism are 5 pieces or equal with 3 cycle of rolling process with 40 mm of diameters. The vertical gap between center of rolls is 41.5 mm with 54 mm horizontal gap. Rolling force produced by the analytical roll dimension is 1608.69 N/cycle and that’s enough to give plastic deformation on the 3 mm SAE 304 (UNS S30400) Galvanized wire.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Lian-yun Jiang ◽  
Qing-cheng Meng ◽  
Chun-jiang Zhao ◽  
Shou-xin Wang ◽  
Yan-wei Liu

The deformation in the inner region along the thickness of the heavy steel plate can be improved by snake rolling method. Then the microstructure and property will be refined and the crack in the inner region may be avoided. Therefore, the in-depth research on snake rolling method mechanics parameter modeling should be conducted to guide production. A snake rolling process with the same roll diameters and different angular velocity was conducted in this paper. The rolling deformation zone will be divided into back slip zone, front slip zone, cross shear zone, and reverse deflection zone according to the direction of the friction during the snake rolling process. The four zones may not exist at the same time. The boundary conditions of existence of the back slip zone, front slip zone, and cross shear zone were established according to the relationship between threading angle and neutral angle. The calculating models which were used to calculate the snake rolling mechanical parameters including the rolling force and rolling torque were set up. The calculated models of unit compressive pressure in the four zones were set up by the slab method, and on this basis the accurate calculating models of the rolling force and rolling torque were set up according to the composition of the rolling deformation zone and the boundary condition. The mechanical parameters were calculated by the analytical method and the numerical method, and the relative deviation is less than 6% which can satisfy the industrial requirement. The present analytical model can predict the characteristics during snake rolling easily and quickly and it is also suitable for online control applications.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


2014 ◽  
Vol 989-994 ◽  
pp. 3386-3389
Author(s):  
Zhu Wen Yan ◽  
Hen An Bu ◽  
Dian Hua Zhang ◽  
Jie Sun

The influence on the shape of the strip from rolling force fluctuations has been analyzed. The combination of intermediate roll bending and work roll bending has been adopted. The principle of rolling force feed-forward control has been analyzed. The feed-forward control model has been established on the basis of neural networks. The model has been successfully applied to a rolling mill and a good effect has been achieved.


2014 ◽  
Vol 988 ◽  
pp. 257-262 ◽  
Author(s):  
Ke Zhi Linghu ◽  
Zheng Yi Jiang ◽  
Fei Li ◽  
Jing Wei Zhao ◽  
Meng Yu ◽  
...  

A 3D elastic-plastic finite element method (FEM) model of cold strip rolling for 6-high continuous variable crown (CVC) rolling mill was developed. The rolling force distributions were obtained by the internal iteration processes. The calculated error has been significantly reduced by the developed model. the absolute error between the simulated results and the actual values is obtained to be less than 10μm, and relative error is less than 1%. The developed model is significant in investigating the profile control capability of the CVC cold rolling mill in terms of work roll bending, intermediate roll bending and intermediate roll shifting.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Rudolf Pernis ◽  
Tibor Kvackaj

The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a) by polygonal curve and (b) by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Saeed Tamimi ◽  
Mostafa Ketabchi ◽  
Nader Parvin ◽  
Mehdi Sanjari ◽  
Augusto Lopes

Severe plastic deformation is a new method to produce ultrafine grain materials with enhanced mechanical properties. The main objective of this work is to investigate whether accumulative roll bonding (ARB) is an effective grain refinement technique for two engineering materials of pure copper and interstitial free (IF) steel strips. Additionally, the influence of severely plastic deformation imposed by ARB on the mechanical properties of these materials with different crystallographic structure is taken into account. For this purpose, a number of ARB processes were performed at elevated temperature on the materials with 50% of plastic deformation in each rolling pass. Hardness of the samples was measured using microhardness tests. It was found that both the ultimate grain size achieved, and the degree of bonding depend on the number of rolling passes and the total plastic deformation. The rolling process was stopped in the 4th cycle for copper and the 10th cycle for IF steel, until cracking of the edges became pronounced. The effects of process temperature and wire-brushing as significant parameters in ARB process on the mechanical behaviour of the samples were evaluated.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4355
Author(s):  
Guanghua Zhou ◽  
Wenting Wei ◽  
Qinglong Liu

The hot ring rolling technology as the crucial procedure for the manufacture of bearing rings plays an important role in determining the final microstructure of bearing rings. In this work, the influence of the hot ring rolling process on the microstructural evolution of 100Cr6 bearing rings was investigated using a three-dimensional (3D) numerical model and microstructural characterization. It was found that the significant microstructural refinement occurs at the different regions of the rings. However, owing to the non-uniform plastic deformation of hot rolling, the refinement rate of grain size and decrease of pearlite lamellar spacing (PLS) also showed uniformity at different regions of the rings. Furthermore, the degree of grain refinement had been limited with the increase of rolling reduction. Due to the refined grain size and decreased PLS, the Vickers hardness increased with the increase of rolling reduction. Moreover, the Vickers hardness from the outer surface to the inner surface of the ring is asymmetrical u-shaped, which had the law of lower hardness in the center area and higher hardness on the surface.


2012 ◽  
Vol 602-604 ◽  
pp. 1864-1868 ◽  
Author(s):  
Lan Wei Hu ◽  
Xia Jin ◽  
Lei Shi ◽  
Sheng Zhi Li

A 3-D thermal-mechanical model was built to simulate the hot rolling process of medium plate, with the aid of nonlinear commercial FE code MSC.SuperForm on a company's actual process parameters. The hot rolling process of single-pass which slab thickness is 180mm was simulated, and the influence of pass reduction on metal flow, stress-strain field, contact stress and rolling force were researched. The study revealed that pass reduction should be at least 20% by increase depress in pass in addition to rolling efficiency. As that, rolling efficiency be increased, roll contact stress be brought down, and its service life be prolonged. And metal plastic strain enhanced, metal flow increased, but its strain field non-uniformly distributed, metal flow and plastic deformation would be strengthen by increase pass reduction, and the lateral broadening in the head is bigger than that in the tail.


2014 ◽  
Vol 1036 ◽  
pp. 370-375 ◽  
Author(s):  
Silviu Berbinschi ◽  
Gabriel Frumuşanu ◽  
Virgil Gabriel Teodor ◽  
Nicolae Oancea

Tools which generate by enveloping using the rolling method may be profiled using various methods. The substitutive circles family method is a complementary method developed based a specifically theorem, in which is determined a family of circles associated with the blank’s centrode, family which envelop the profile to be generate. The method assumes the determination of the circles family, transposed in the rolling process between the blank and tool centrodes. In this paper is proposed an algorithm for curling surfaces in enveloping, associated with a pair of rolling circular centrodes. The graphical algorithm is based on the representation of the circles family enveloped the blank’s profile. It is generated the circles family transposed on the centrode associated with the gear shaped cutter and is determined a new position of contact points with the blank. The assembly of these points forms the profile of the gear shaped cutter. The numerical data proof the proposed method quality.


2011 ◽  
Vol 101-102 ◽  
pp. 534-537
Author(s):  
Bao Shou Sun ◽  
Liang Tao Qi ◽  
Xue Dao Shu

In this paper, the simulation model of the cold rolling process of the deep groove bearing inner ring was established by using the finite element software Deform-3D. The numerical calculation of the model was made with different process parameters. The law of the influence the process parameters on the rolling force was analyzed. The deformation mechanism of the cold rolling process of the inner ring was revealed. The research indicated that the feed rate of idle roller had the greatest influence on the cold rolling process. Finally the experiment using the XS-50 precision CN ring rolling machine was carried on and a finished product of the inner ring of a better quality came out. It verified that the numerical simulation could provide theoretical basis for the practical production process.


Sign in / Sign up

Export Citation Format

Share Document