scholarly journals Influence of Heating Temperature, Keeping Time and Raw Materials Grain Size on Al4O4C Synthesis in Carbothermal Reduction Process and Oxidation of Al4O4C

2007 ◽  
Vol 115 (1346) ◽  
pp. 654-660 ◽  
Author(s):  
Jianli ZHAO ◽  
Wei LIN ◽  
Akira YAMAGUCHI ◽  
Junji OMMYOJI ◽  
Jialin SUN
2014 ◽  
Vol 881-883 ◽  
pp. 1017-1020
Author(s):  
Shuang Shuang Ding ◽  
Peng Cui ◽  
Hong Xi Zhu ◽  
Cheng Ji Deng ◽  
Chao Yu

A12OC ceramic powder was successfully synthesized via a carbothermal reduction method using Al2O3, B2O3 and activated carbon powders as raw materials. The effects of synthesis temperature on the phase transformation and micro-morphology of A12OC were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the content of A12OC in the products was increased with the increasing heating temperature. The optimized process for preparing A12OC was heating the mixtures at 1700 °C for 2 h in argon flow. A12OC particles synthesized at 1700 °C were hexagon plate-like with thickness of 5 μm and size of about 50 μm. Keywords: A12OC, synthesis, microstructure


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 129
Author(s):  
Wang ◽  
Gu ◽  
Qu ◽  
Shi ◽  
Luo ◽  
...  

Nickel laterite ore is divided into three layers and the garnierite examined in this study belongs to the third layer. Garnierite is characterized by high magnesium and silicon contents. The main contents of garnierite are silicates, and nickel, iron, and magnesium exist in silicates in the form of lattice exchange. Silicate minerals are difficult to destroy so are suitable for smelting using high-temperature pyrometallurgy. To solve the problem of the large amounts of slag produced and the inability to recycle the magnesium in the traditional pyrometallurgical process, we propose a vacuum carbothermal reduction and magnetic separation process to recover nickel, iron, and magnesium from garnierite, and the behavior of the additive CaF2 in the reduction process was investigated. Experiments were conducted under pressures ranging from 10 to 50 Pa with different proportions of CaF2 at different temperatures. The experimental data were obtained by various methods, such as thermogravimetry, differential scanning calorimetry, scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy. The analysis results indicate that CaF2 directly reacted with Mg2SiO4, MgSiO3, Ni2SiO4, and Fe2SiO4, which were isolated from the bearing minerals, to produce low-melting-point compounds (FeF2, MgF2, NiF2, etc.) at 1315 and 1400 K. This promoted the conversion of the raw materials from a solid–solid reaction to a liquid–liquid reaction, accelerating the mass transfer and the heat transfer of Fe–Ni particles, and formed Si–Ni–Fe alloy particles with diameters of approximately of 20 mm. The smelting materials appeared stratified, hindering the reduction of magnesium. The results of the experiments indicate that at 1723 K, the molar ratio of ore/C was 1:1.2, the addition of CaF2 was 3%, the recovery of Fe and Ni reached 82.97% and 98.21% in the vacuum carbothermal reduction–magnetic separation process, respectively, and the enrichment ratios of Fe and Ni were maximized, reaching 3.18 and 9.35, respectively.


2014 ◽  
Vol 602-603 ◽  
pp. 238-241 ◽  
Author(s):  
Teng Yu Wang ◽  
You Guo Xu ◽  
Zhao Hui Huang ◽  
Ming Hao Fang ◽  
Yan Gai Liu ◽  
...  

This paper mainly discusses the influences of heating temperatures and CeO2 additive contents on the phase transformations of zirconia from zircon ore by carbothermal reduction. The phase transformations of zirconia from zircon ore by carbothermal reduction were monitored by X-ray diffraction. The microstructure of the product was characterized by scanning electron microscopy. The results show that without adding CeO2, the optimized heating temperature of zircon carbothermal reduction was 1600 °C and the main phases of the product were m-ZrO2, ZrC and β-SiC, t-ZrO2; After adding CeO2, the main phase of the products consists of t-ZrO2, m-ZrO2, ZrC and β-SiC when the heating temperature is 1600 °C. CeO2 additive can be introduced into zirconia lattice and can cause it to form cerium stabilized zirconia. Zirconia in the product would be turned into partially stabilized zirconia with cerium addition from 5 wt% to 20 wt%. However, the form of zirconia in the product is not changed greatly with the amount of CeO2 additive increase.


2011 ◽  
Vol 399-401 ◽  
pp. 813-816 ◽  
Author(s):  
Chao Yu ◽  
Wen Jie Yuan ◽  
Jun Li ◽  
Hong Xi Zhu ◽  
Cheng Ji Deng

Tabular structure of Al4SiC4-Al8SiC7composites was successfully synthesized using a mixture of calcined bauxite, SiC and carbon black by a carbothermal reduction process. The effects of the amount of SiC addition and the heating temperature on synthesis of Al4SiC4-Al8SiC7composites by carbothermic reduction were investigated. The results show that SiC amount played an important role in the content of the final products. With the increasing of heating temperature, the Al4SiC4content increased and Al8SiC7content decreased in the products, which indicated the formation and growth of Al4SiC4were promoted.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seok-Ho Maeng ◽  
Hakju Lee ◽  
Min Soo Park ◽  
Suhyun Park ◽  
Jaeki Jeong ◽  
...  

AbstractWe report the extraction of silicon via a carbothermal reduction process using a CO2 laser beam as a heat source. The surface of a mixture of silica and carbon black powder became brown after laser beam irradiation for a few tens of seconds, and clear peaks of crystalline silicon were observed by Raman shift measurements, confirming the successful carbothermal reduction of silica. The influence of process parameters, including the laser beam intensity, radiation time, nitrogen gas flow in a reaction chamber, and the molar ratios of silica/carbon black of the mixture, on the carbothermal reduction process is explained in detail.


2020 ◽  
Vol 837 ◽  
pp. 74-80
Author(s):  
Jun Yuan ◽  
Zhen Yu Han ◽  
Yong Deng ◽  
Da Wei Yang

In view of the special requirements of rails to ensure the safe and stable operation of Railways in China, the formation characteristics of austenite grains in high carbon rail are revealed through industrial exploration, the process of industrial rail heating and rolling is simulated, innovative experimental research methods such as different heating and heat treatment are carried out on the actual rails in the laboratory. Transfer characteristics of austenite grain size, microstructures and key properties of high carbon rail during the process are also revealed. The results show that the austenite grain size of industrial produced U75V rail is about 9.0 grade. When the holding temperature is increased from 800 C to 1300 C, the austenite grain size of high carbon rail steel decreases, the austenite grain are gradually coarsened, and the tensile strength increases slightly. The tensile strength is affected by the heating temperature. With the increase of heating temperature, the elongation and impact toughness of high carbon rail decrease. The heating temperature of high carbon rail combined with austenite grain size shows that the heating temperature has a great influence on austenite grain size, and has the most obvious influence on the toughness of high carbon rail.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hyunho Shin ◽  
Jun-Ho Eun

A TiC powder is synthesized from a micron-sized mesoporous metatitanic acid-sucrose precursor (precursor M) by a carbothermal reduction process. Control specimens are also prepared using a nanosized TiO2-sucrose precursor (precursor T) with a higher cost. When synthesized at 1500°C for 2 h in flowing Ar, the characteristics of the synthesized TiC from precursor M are similar to those of the counterpart from precursor T in terms of the crystal size (58.5 versus 57.4 nm), oxygen content (0.22 wt% versus 0.25 wt%), and representative sizes of mesopores: approximately 2.5 and 19.7–25.0 nm in both specimens. The most salient differences of the two specimens are found in the TiC from precursor M demonstrating (i) a higher crystallinity based on the distinctive doublet peaks in the high-two-theta XRD regime and (ii) a lower specific surface area (79.4 versus 94.8 m2/g) with a smaller specific pore volume (0.1 versus 0.2 cm3/g) than the counterpart from precursor T.


2005 ◽  
Vol 40 (18) ◽  
pp. 5091-5093 ◽  
Author(s):  
AN-HUI LU ◽  
WOLFGANG SCHMIDT ◽  
WOLFGANG KIEFER ◽  
FERDI SCHÜTH

2010 ◽  
Vol 63 ◽  
pp. 420-424
Author(s):  
Riva Rivas-Marquez ◽  
Carlos Gomez-Yanez ◽  
Ivan Velasco-Davalos ◽  
Jesus Cruz-Rivera

Using Mechanical Activation it is possible to obtain small grain size and good homogeneity in a ceramic piece. For ZnO varistor devices Mechanical Activation appears to be a good fabrication technique, since good homogeneity and small grain sizes are advantageous microstructural features. The typical formulation is composed by ZnO, Bi2O3, Sb2O3, CoO, MnO2 and Cr2O3 as raw materials, and during sintering, several dissolutions and reactions to form pyrochlore and spinel phases occur. When Mechanical Activation is applied to the entire formulation, it is difficult to know what processes are being mechanically activated due to the complexity of the system. The aim of the present work was to clarify how the mechanical activation is taking place in a typical ZnO varistor formulation. The methodology consisted in the formation of all possible combinations of two out of the five oxides above mentioned and to apply mechanical activation on the mixture of each pair of powders. The results showed that systems containing Bi2O3 are prone to react during mechanical activation. Also, reduction reactions were observed in MnO2. In addition, the powder mixture corresponding to the whole formulation was milled in a planetary mill, pressed and sintered, and varistor devices were fabricated. Improvement in the nonlinearity coefficient and breakdown voltage was observed.


Sign in / Sign up

Export Citation Format

Share Document