Burial Diagenesis of the Eocene Sobrarbe Delta (Ainsa Basin, Spain) Inferred From Dolomitic Concretions

2015 ◽  
Vol 85 (9) ◽  
pp. 1037-1057 ◽  
Author(s):  
Guilhem Hoareau ◽  
Francis Odonne ◽  
Daniel Garcia ◽  
Elie-Jean Debroas ◽  
Christophe Monnin ◽  
...  

Abstract:  Little attention has been focused on the burial diagenesis of deltas deposited on active foreland-basin margins, where tectonics is likely to strongly impact fluid–rock interactions. A petrographic, geochemical, and microthermometric study of several fractured dolomite concretions and enclosing prodelta marls provides insights into the evolution of burial diagenesis in the Eocene Sobrarbe deltaic complex (Ainsa Basin, Spain), and more generally, on the paleohydrology of the South Pyrenean foreland basin. Shallow burial diagenesis was controlled by microbial activity in marine-derived porewaters. Microbial sulfate reduction was first responsible for the formation of pyrite and early calcite, followed by the growth of dolomite concretions during methanogenesis. Subsequent diagenesis was limited to temperatures and depth of less than approximately 75°C and 2 km, respectively. Diagenesis was recorded in porous bioturbation traces and septarian fractures found inside dolomite concretions, as well as in tectonic shear fractures. Neomorphic tabular barite, found only in the bioturbation traces, is interpreted to have formed early in marine-derived porewaters. Septarian fractures were then filled by Fe-rich calcite and centimeter-size celestine. Stable isotopes indicate that calcite probably formed in meteoric-derived waters coming from the overlying fluvial delta plain. The sulfur isotope composition of celestine is compatible with precipitation in waters of mixed parentage, but the exact origin of dissolved sulfate remains poorly constrained. In tectonic fractures, celestine precipitated coevally with calcite displaying evidence of strong fluid–rock interaction. Dissolved sulfate may have migrated to the fractures during active tectonics from the late Eocene to the Oligocene. The paragenesis and the proposed paleohydrologic model are similar to those previously described for other deltaic systems deposited in active foreland basins, including the South Pyrenean foreland basin. These features point to common diagenetic processes in syntectonic foreland-basin deltas, involving both meteoric and marine fluid sources. Similar to passive margin settings, early diagenesis appears to be controlled mainly by relative variations of sea level, whereas during further burial, the development of permeable tectonic fractures is likely to facilitate the influx of basinal or continental waters into fine slope deposits, impacting the diagenetic record. These results emphasize the importance of fracture development in the fluid-flow regime of syntectonic foreland-basin deltas. They demonstrate the necessity to take this parameter into account in fluid-flow modeling of foreland-basin margins.

2011 ◽  
Vol 182 (6) ◽  
pp. 479-491 ◽  
Author(s):  
Pierre Maurizot

Abstract New Caledonia lies at the northern tip of the Norfolk ridge, a continental fragment separated from the east Gondwana margin during the Late Cretaceous. Stratigraphic data for constraining the convergence that led to ophiolitic nappes being obducted over Grande Terre during the Eocene are both few and inaccurate. To try and fill this gap and determine the onset of the convergence, we investigated the lithology, sedimentology, biostratigraphy and geodynamic context of the Late Cretaceous – Palaeogene sedimentary cover-rock succession of northern New Caledonia. We were able to establish new stratigraphic correlations between the sedimentary units, which display large southwest-verging overfolds detached along a basal argillite series, and reinterpret their interrelationships. The sediments from the Cretaceous-Paleocene interval were deposited in a post-rift pelagic environment and are mainly biogenic with minimal terrigenous input. From the base up, they comprise black organic-rich sulphide-bearing argillite, black chert (silicified equivalent of the argillite), micritic with chert, and micrite rich in planktonic foraminifera. These passive-margin deposits are found regionally on the Norfolk Ridge down to New Zealand, and on the Lord Howe Rise, and were controlled primarily by regional or global environmental factors. The overlying Eocene deposits mark a change to an active-margin regime with distal calciturbidite and proximal breccia representing the earliest Paleogene flysch-type deposits in New Caledonia. The change from an extensional to a compressive regime marks the beginning of the pre-obduction convergence and can be assigned fairly accurately in the Koumac–Gomen area to the end of the Early Eocene (Late Ypresian, Biozone E7) at c 50 Ma. From this period on, the post-Late Cretaceous cover in northern New Caledonia was caught up and recycled in a southwest-verging accretionary complex ahead of which flysch was deposited in a flexural foreland basin. The system prograded southwards until the Late Eocene collisional stage, when the continental Norfolk ridge entered the convergence zone and blocked it. At this point the autochthonous and parautochthonous sedimentary cover and overlying flysch of northern New Caledonia was thrust over the younger flysch to the south to form a newly defined allochthonous unit, the ‘Montagnes Blanches’ nappe, that is systematically intercalated between the flysch and the obducted ophiolite units throughout Grande Terre.


2020 ◽  
pp. 775-795
Author(s):  
John L. Muntean

Abstract Carlin-type gold deposits in Nevada account for ~5% of worldwide annual gold production, typically about ~135 metric tons (t) (~4.5 Moz) per year. They are hydrothermal epigenetic replacement bodies hosted predominantly in carbonate-bearing sedimentary rocks. They are known for their “invisible” gold that occurs in the crystal structure of pyrite. Over 95% of the production from these deposits is from four clusters of deposits, which include the Carlin trend and the Cortez, Getchell, and Jerritt Canyon camps. Despite differences in the local geologic settings, the characteristics of the deposits are very similar in the four clusters. Shared characteristics include: (1) alteration characterized by carbonate dissolution, silicate argillization, and silicification; (2) ore formation characterized by auriferous arsensian pyrite, typically as rims on preore pyrite, followed by late open-space deposition of orpiment, realgar, stibnite, and other minerals; (3) Ag/Au ratios of <1 in ore; (4) an As-Hg-Sb-Tl geochemical signature; (5) low temperatures (~160°–240°C) and salinities of ore fluids (~1–6 wt % NaCl equiv) and fairly shallow depths of formation (<~2–3 km); and (6) lack of mineral and elemental zoning around ore. The four clusters share regional geologic controls related to formation as follows: (1) along the rifted margin of a craton, (2) within the slope facies of a passive margin sequence dominated by carbonates, (3) in the lower plate of a regional thrust fault, and (4) during a narrow time interval in the late Eocene (~42–34 Ma). The geometries and ore controls of the deposits in the four clusters are also very similar. At the deposit scale, ore and hydrothermal alteration are commonly associated with high-angle faults and preore low-angle contractional structures, including thrust faults and folds. The high-angle faults acted as fluid pathways for upwelling ore fluids, which were then diverted into lower angle favorable strata and contractional structures, where fluid-rock interaction led to replacement of carbonate and formation of ore. Rheologic contrasts between lithologies were also critical in diverting fluids into wall rocks. Common rheologic contrasts include contacts between thin- and thick-bedded lithologic units and the margins of contact metamorphic aureoles associated with Mesozoic intrusions. The similarities suggest common processes. Four critical processes are apparent: (1) development of source(s) for gold and other critical components of the ore fluids, (2) formation of fluid pathways, (3) water-rock interaction and gold deposition, and (4) a tectonic trigger, which was renewal of magmatism and a change from contraction to extension in the late Eocene. Consensus exists on these processes, except for the source of gold and other components of the ore fluid, with most models calling upon either a magmatic-hydrothermal source or a crustal source, where metals were scavenged by either meteoric or metamorphic fluids. Future research should focus on Carlin-style deposits in Nevada that exhibit epithermal characteristics and deposits that appear to have a clear genetic association with magmatic-hydrothermal systems associated with upper crustal intrusions. Rather than discrete types of ore deposits, there may be continua between Carlin-type gold deposits, epithermal deposits, and distal disseminated deposits, with the four large camps representing an end member.


2012 ◽  
Vol 56-57 ◽  
pp. 86-107 ◽  
Author(s):  
Romain Tartèse ◽  
Philippe Boulvais ◽  
Marc Poujol ◽  
Thomas Chevalier ◽  
Jean-Louis Paquette ◽  
...  

2021 ◽  
Author(s):  
Charlotte Peigney ◽  
Elisabet Beamud ◽  
Òscar Gratacós ◽  
Eduard Roca ◽  
Alberto Sáez ◽  
...  

<p>In foreland settings at the front of active orogens, the aggradation/progradation of fluvial fans and sedimentary changes in lacustrine systems depends greatly on the tectonic activity and the derived drainage pattern changes in the hinterland. As a result of the emplacement and erosion of the South-Pyrenean thrust sheets, a system of N-S fluvial fans prograded into the Ebro foreland basin from late Eocene to Oligocene times. After the synorogenic deposition of the Priabonian (late Eocene) marine evaporites of the Cardona Fm, the Ebro Basin was characterized by internal drainage, with the fluvial fans grading to lacustrine systems at the center of the basin, which developed and migrated in response to subsidence changes. All these deposits were deformed by variably oriented salt-detached folds, evidencing the basinwards propagation of the deformation. In this work, we study the Solsona-Sanaüja fluvial fan system by means of litostratigraphy and magnetostratigraphy aiming to determine the age of the transition from fluvial fan to lacustrine systems in the NE sector of the Ebro Basin. The precise dating of this succession reveals causal relationships between tectonic and climatic processes affecting the source-to-sink system, including changes in the depositional style linked to the evolution of the Pyrenean fold and thrust belt.</p><p>Our new magnetostratigraphic study consisted in the sampling and analysis of 195 samples along a ca. 1800m thick stratigraphic section of the late Eocene-Oligocene succession in the northern limb of the NW-SE oriented Sanaüja Anticline. Our results show overall Priabonian to Rupelian ages for the succession, considering an age of 36 Ma. (C16n) for the top of the Cardona Fm from previous magnetostratigraphic studies. This allows dating the end of the evaporitic sedimentation (top of the Barbastro Fm) as Priabonian and establishing a late Priabonian to early Rupelian (C13r) age for the transition from the younger lacustrine deposits (Torà Fm) to the continuous and most important fluvial fan episode of progradation in the study area. The final progradation of the fluvial fan system was coeval to a tectonically controlled reorganization of the drainage pattern of the basin responding to the emplacement of the South-Pyrenean thrust sheets. Meanwhile, smaller scale (hectometric-decametric) alternation between lacustrine and alluvial deposits was possibly driven by climatic changes related to orbital eccentricity cycles. The correlation and integration of these results with previous magnetostratigraphic studies in the area can help analyzing sedimentation patterns and architectural changes in the basin margins at a regional scale.</p>


2021 ◽  
Author(s):  
Yang Chu ◽  
Bo Wan ◽  
Mark B. Allen ◽  
Ling Chen ◽  
Wei Lin ◽  
...  

<p><span>The timings of the onset of oceanic spreading, subduction and collision are crucial in plate tectonic reconstructions, but not always straightforward to resolve. The evolution of the Paleo-Tethys Ocean dominated the Paleozoic-Early Mesozoic tectonics of West Asia, but the timeline of events is still poorly-constrained. In this study we present detrital zircon ages from NE Iran, in order to determine the timing of tectonic events in the region, and the wider implications for regional tectonics, paleogeography and climate change. Paleozoic clastic rocks record two major age peaks at ~800 Ma and ~600 Ma. The consistency in age patterns shows a dominant provenance from the Neoproterozoic basement of northern Gondwana. We interpret deposition on a long-lasting passive continental margin after the initial spreading of the Paleo-Tethys Ocean. Initial collision between the South Turan (Eurasia) and Central Iran (Gondwana) blocks caused coarse clastic deposition, the protolith of the Mashhad Phyllite, in a peripheral foreland basin on the Paleozoic passive margin. The Mashhad Phyllite yields major zircon age clusters at 450-250 Ma and 1900-1800 Ma, with a clear provenance from the active, Eurasian, margin. The Paleozoic ages reveal a long-lived subduction zone under the South Turan Block began in the latest Ordovician. Analysis of the age spectra allows us to constrain the timing of initial collision as no later than 228 Ma, which is also a constraint on the maximum depositional age of the Mashhad Phyllite. Based on our new results and previous data, we discuss the interaction between the Rheic and Paleo-Tethys oceans, and explain how a new subduction zone may have initiated after continental collision. The timing of collision is similar to the Carnian Pluvial Event (CPE). Paleo-Tethys collision has previously been suggested as the trigger for this climatic change, and our study provides timing evidence that reinforces Paleo-Tethys closure as a causal mechanism for the CPE.</span></p>


Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


Tectonics ◽  
2021 ◽  
Author(s):  
Richard Thomas Walker ◽  
Y. Bezmenov ◽  
G. Begenjev ◽  
S. Carolin ◽  
N. Dodds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document