scholarly journals Statistical Indices of Land Use Changes and Nutrients Balance of Tomatoes and Peppers Production in Jordan Valley and Highlands (1999-2019)

2021 ◽  
Vol 15 (2) ◽  
pp. 65-76
Author(s):  
Mohunnad Massimi

Climate change has caused pressure on water resources in Jordan. This was accompanied by the Syrian refugee crisis during the period 2009 to 2019. This descriptive study was conducted in the University of Debrecen, during the years 2020 and 2021 within the course of sustainable land use by collecting official statistical data from reliable sources in Jordan on the production of tomato, pepper, and paprika during five years 1999, 2004, 2009, 2014 and 2019 to compare the change in land use, crop sown structure, country production, unit area average yield and estimation of unit area pollution with major nutrients. The study showed an increased land used for the production of vegetables by (+ 37.84%) during the period from 2004 to 2014, high productivity per hectare for three crops from 2014 to 2019. Jordan had the highest tomato and paprika crop yields in 2014. The reason is due to the increase in the local and global demand for these crops along with other reasons, which have promoted the use of mass production agricultural techniques, the most important of which is chemical fertilization. Which caused the accumulation of phosphorus and potassium in soils.

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


Author(s):  
Stanley Atonya ◽  
Luke OLANG ◽  
Lewis Morara

A comprehensive undertanding of land-use/cover(LUC) change processes, their trends and future trajectories is essential for the development of sustainable land-use management plans. While contemporay tools can today be employed to monitor historical land-cover changes, prediction of future change trajectories in most rural agro-ecological landscapes remains a challenge. This study evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya and Uganda for the period 2017-2047. The land use change drivers were obtained through a rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change trajectories under different scenarios. The model was validated using historical land cover maps for the period of 2008 and 2017, producing overall accuracy result of 85.7% and a Kappa coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the other hand, built-up areas were mainly influenced by population density. Under the afforestation scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely, under the intense agriculture scenario, cropland and pasture cover types occupied 78% of the basin. However, in a scenario where natural forest and wetlands were protected, cropland and pasture only expanded by 74%. The study successfully outlined proximate land cover change drivers, including potential future changes and could be used to support the development of sustainable long-term transboundary land-use plans and policy.


2011 ◽  
Vol 1 (2) ◽  
pp. 233-247 ◽  
Author(s):  
Madhu Khanna ◽  
Christine L. Crago ◽  
Mairi Black

Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC.


2019 ◽  
Vol 12 (3-4) ◽  
pp. 33-43 ◽  
Author(s):  
Vera Iváncsics ◽  
Krisztina Filepné Kovács

Abstract The post-socialist era resulted remarkable changes in urban landscape in Eastern Europe and in Hungary. The special circumstances caused moderate level of urbanisation and special patterns of urban sprawl, traceable in land use changes. The urban sprawl and suburbanisation became an important trend around smaller Hungarian cities as well. Regulators are eager to rule the evolution of spaces, however, it is hard to control all aspects of land use. The research presented in this paper shows the dynamics of new artificial areas with the help of land use changes from the Corine Database for the functional urban area around Veszprém and attempts to find the most important policy responses to the growing artificial surfaces after transition. The research questions are: What are the most important trends in changing in-built areas in a small city after the transition? What kind of new artificial areas appeared and where are they situated? Were the land use plans and nature protection effective tools for manage urban sprawl? With the help of Corine land use changes between 1990-2018 the most important spatial changes are shown, and the different peri-urban areas are compared around the core town. Attention is drawn to the importance of regulation for sustainable land use and protection of resources. It also highlights the importance of the regulatory power of municipalities. Changes in the environment of Veszprém may give inspiration for the rethinking the relationship of urban-rural, and catchment area and core town.


ZooKeys ◽  
2018 ◽  
Vol 801 ◽  
pp. 63-96
Author(s):  
Catherine Souty-Grosset ◽  
Ariel Faberi

Terrestrial isopods (approximately 3700 known species in the world) are encountered in temperate and tropical regions, from the seashore to high altitudes and from floodplain forests to deserts. They are known to contribute to soil biodiversity. Environmental factors and anthropogenic actions, particularly land use changes such as primarily agricultural practices, and urbanization affect soil biodiversity and their functions. Human practices, such as soil tillage, pesticide application, chemical pollution, along with soil acidification adversely affect isopod abundance and diversity. It is thus important to recognise the vital contributions of soil biodiversity in support of environmental quality protection through maintaining soil functions and their significance to sustainable land use. This review will also deal with recent studies attempting to evaluate the impact of returning to an environmentally friendly agriculture by restoring refuge habitats such as grass strips, hedges, and woodlands for terrestrial isopods.


Author(s):  
Carmelo Maria Torre ◽  
Pierluigi Morano ◽  
Francesco Tajani

Our work is regarding the analysis of land use changes, in the light of “saving soil” against the expansion due to unearned plus value of land: The loss of natural and agricultural surface in front of the expanding urban environment is a critical aspect of unsustainability of urban development, especially in the way it was carried out in the past decades. The measure of the physical transition of land use and characters from a more natural condition of land surface to a new artificial one, joint with a parallel analysis of the increase of land value due to such change is nowadays a major land-policy tool. The interplay of urban economics regulation with planning, reveals new key issues in urban governance and environmental preservation. In this paper it will be shown some experiment about the impact assessment of soil take, related with the seek of valorization of property inside the planning process. Our paper reports as well about the experimental activity carried out inside the MITO Lab of the Polytechnic of Bari, where reports about property values and environmental values have been produced, specially looking at the reality of the Apulia, a southern Italian Region, that is rich of farmlands and coastlines, often invaded by constructions with a severe loss of nature, landscape and ecosystems services.


Floods are one of the most common natural disasters worldwide. In Malaysia, floods cause significant economic damage and loss of human life. The frequency and magnitude of floods are increasing due to climate change and related anthropogenic activities. This study surveyed 280 respondents living in the Temerloh district which is in the midstream zone of the Pahang River Basin. This paper highlights their flood experience and identifies the cause of floods from the view of lay people. Results show that respondents are experienced in flood and flood-related damages. However, their perception of the causes of floods focused on natural causes while ignoring anthropogenic activities such as land use changes. To identify the land use changes, we used a classified shapefile for the years 2000 and 2010 from the Department of Agriculture, Malaysia and used overlay procedure in ArcGIS 10.1. Within the ten years, significant land use changes took place which could increase future flood risks. This paper argues that a grassroots approach to solving flood-related problems is essential. Accordingly, policymakers and decision-makers should involve the local community in the decision making which may develop their flood risk perception and awareness about sustainable land use.


2019 ◽  
pp. 0739456X1984543
Author(s):  
José María Feria Toribio ◽  
Jesús Santiago Ramos

Metropolitan areas are complex, dynamic spatial systems. This paper sets out a spatial analysis methodology suitable to address the internal complexity of metropolitan landscape change and which results could be useful for decision making in the context of sustainable land use planning. A two-scale approach is adopted for the analysis of recent land use changes in the metropolitan area of Seville (Spain), being the methodology applied to both the whole metropolitan area and two different landscape units. Distinct landscape change patterns and urban growth models are identified for the units studied. On the basis of the results, the convenience of a multiscale planning approach is highlighted.


2014 ◽  
Vol 1 (1) ◽  
pp. 463-495
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has been a challenging issue since soils present high variability in properties and functions. This paper aims to increase understanding of SQ through review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses, being the most used indicators soil organic carbon and pH. The use of nitrogen and nutrients content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, being microbial biomass and enzyme activities the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish a SQI, based on scoring and weighting of different soil indicators, selected by multivariate analyses. The use of multiple linear regressions has been successfully used under forest land use. Urban soil quality has been poorly assessed, with lack of adoption of SQIs. In addition, SQ assessments were human health indicators or exposure pathways are incorporated are practically inexistent. Thus, new efforts should be carried out to establish new methodologies not only to assess soil quality in terms of sustainability, productivity and ecosystems quality, but also human health. Additionally, new challenges arise with the use and integration into SQIs of stable isotopic, genomic, proteomic and spectroscopy data.


Author(s):  
D. L. Cornelio

Abstract. Significant land use changes in Fiji Islands caused soil degradation, pollution and biodiversity losses. The planting of trees is an option of sustainable land use with long term ecological and economic advantages. Spatial models based on ecological requirements of tree species facilitates decision making, planning and risks management before planting. A land suitability analysis with Geographic Information System (GIS) was carried out to identify areas in Vitilevu island for the planting of eleven native and exotic tree species. Altitudes, rainfall and forest cover maps were used as discrimination factors in boolean operations. The species with higher ecological potential for plantation were Syzygium decussatum (22% of the total area), Tectona grandis (19% of the total area), and Metroxylon vitiense (18% of the total area). The model is robust but can be enhanced by adding thematic layers of other environmental factors.


Sign in / Sign up

Export Citation Format

Share Document