Stratigraphic organisation of a composite macrotidal wedge: the Holocene sedimentary infilling of the Mont-Saint-Michel Bay (NW France)

2010 ◽  
Vol 181 (2) ◽  
pp. 99-113 ◽  
Author(s):  
Bernadette Tessier ◽  
Isabelle Billeaud ◽  
Patrick Lesueur

Abstract The Mont-Saint-Michel Bay (NW France) is a composite macrotidal environment that was filled up in the course of the Holocene transgression and sea-level highstand. Three main sub-environments constitute the present-day landscape of the bay: 1) a wide embayment with extensive mud to sandflats in the south, 2) a sandy to muddy channel-and-shoal estuarine system in the east, 3) a wave-dominated sandy coast composed of beach and dune barrier in the north. The Holocene infill of this composite macrotidal basin has been studied thanks to a set of vibrocores and VHR seismic data. The main results are summarized as follows: the TST is composed by a low-energy aggradational unit in the axis of the estuarine valley, and by high-energy sediment bodies (tidal dunes and banks) outside the valley; the HST (post 6500 yr B.P.) constitutes the main component of the infill. In the north, it is characterised by an aggradational unit made of back-barrier tidal lagoonal infill successions. In the embayment, it is represented by an aggradational unit composed of tidal-flat deposits. In the estuarine axis, the HST is constituted by a sand-dominated tidal channel-and-shoal belt. The rate of the Holocene sea-level rise appears to be the main factor of control of the infill architecture of the Mont-Saint-Michel Bay since the most significant change occurred around 6500 yr B.P. when the transgression slowed down. The interaction between hydrodynamic agents and sediment supply exerts as well a key control, especially during the late Holocene, when transgression is slow. The impact of climate changes is recorded in the infill during this period. The rocky substrate hypsometry should be considered also as a major forcing parameter as it determines the potential of preservation of the infill in relation with the depth of ravinement by tidal currents.

The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


2009 ◽  
Vol 72 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Hendrik Lantzsch ◽  
Till J.J. Hanebuth ◽  
Vera B. Bender

AbstractThe high-energy, low-accumulation NW Iberian shelf features three confined Holocene mud depocentres. Here, we show that the evolution of such depocentres follows successive steps. The flooding of inner shelf zones and river catchment areas by the late deglacial sea-level rise provided the precondition for shelf mud deposition. Following this, the Holocene deceleration of the sea-level rise caused a rapid refill of the accommodation space within river valleys. Subsequently, the export of major amounts of fines was initiated. The initial onset and loci of shelf mud deposition were related to deposition-favouring conditions in mid-shelf position or to the presence of morphological highs, which act as sediment traps by providing protection against stronger hydrodynamic energy. The detailed reconstruction of the Holocene depocentre evolution shows for the first time that the expansion of such shelf mud deposits cannot only occur by linear growth off the associated sediment source. Rather, they might develop around centres that are fully disconnected from the source of original sediment supply, and expand later into specific directions. Based on these differences and on the connection of the individual mud depocentres to the material source we propose a conceptual subdivision of the group “mid-shelf mud depocentres”.


2021 ◽  
Author(s):  
Michele Delchiaro ◽  
Giulia Iacobucci ◽  
Francesco Troiani ◽  
Marta Della Seta ◽  
Paolo Ballato ◽  
...  

<p>The Seymareh landslide is the largest rock slope failure (44 Gm<sup>3</sup>) ever recorded on the exposed Earth surface. It detached ∼10 ka BP from the northeastern flank of the Kabir-Kuh anticline (Zagros Mts., Iran) originating the natural dam responsible for the formation of a three-lake system (Seymareh, Jaidar, and Balmak lakes, with an area of 259, 46, and 5 km<sup>2</sup>, respectively). The lake system persisted for ∼3000 yr during the Holocene before its emptying phase due to overflow. A sedimentation rate of 21 mm yr<sup>−1</sup> was estimated for the Seymareh lacustrine deposits, which increased during the early stage of lake emptying because of enhanced sediment yield from the lake tributaries. </p><p>To reconstruct the climatic and environmental impact on the lake infilling, we reviewed the geomorphology of the basins and combined the results with multi-proxy records from a 30 m thick lacustrine sequence in Seymareh Lake. Major analyses comprise grain size analysis, carbon and oxygen stable isotopes of carbonate-bearing sediments, and X-ray diffraction analysis of clay minerals.</p><p>Lake overflowing is largely accepted as the main response to variations in water discharge and sediment supply since the alternation from dry to wet phases enhances sediment mobilization along hillslopes decreasing the accommodation space in the downstream sedimentary basins. In this regard, during the early-middle Holocene, the Seymareh area, as well as the entire Middle East, was affected by short-term climate changes at the millennial-scale, as testified by both paleoecological and archaeological evidence. Indeed, several records from Iranian lakes (i.e., Mirabad, Zeribar, Urmia) well documented the temperature and the moisture conditions of the western Zagros Mountains during the Holocene. During the early Holocene, the precipitation remained low up to 6 ka BP, reaching the driest condition around 8-8.2 ka BP. The impact of this abrupt climate change is evident across West Asia, where the first large villages with domesticated cereals and sheeps disappeared, converting to small hamlets and starting habitat-tracking. As regards the Seymareh area, a more irregular distribution of rainfalls and their increasing seasonality may support rhexistasy conditions, during which the scarce vegetation cover enhances both the hillslope erosion and sedimentation rate in the basins, most likely contributing to the overflow of Seymareh Lake. </p>


Radiocarbon ◽  
2020 ◽  
Vol 62 (2) ◽  
pp. 289-311
Author(s):  
Alex da Silva de Freitas ◽  
Javier Helenes Escamilla ◽  
Cintia Ferreira Barreto ◽  
Alex Cardoso Bastos ◽  
Estefan Monteiro da Fonseca ◽  
...  

ABSTRACTMicropaleontological and geochemical data were applied to sediments from southeastern Brazil to study the hydrodynamics associated with the Holocene sea level rise. Sediment cores were taken around Vitória Bay, examined for dinoflagellate cysts and subjected to isotopic analysis. The cyst assemblage mainly dominated by autotrophic species most notably O. centrocarpum, L. machaerophorum and T. vancampoae. The influence of the marine transgression and subsequent regression observed during the Holocene along the coast of Brazil could have initially favored the establishment of an oligotrophic and higher energy environment. The inflow of continental water from tributaries combined with a higher inflow of saline water into the estuarine system could have favored the establishment and subsequent deposition of the dinocysts.


2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


Ocean Science ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 147-159 ◽  
Author(s):  
Alexander Harker ◽  
J. A. Mattias Green ◽  
Michael Schindelegger ◽  
Sophie-Berenice Wilmes

Abstract. An established tidal model, validated for present-day conditions, is used to investigate the effect of large levels of sea-level rise (SLR) on tidal characteristics around Australasia. SLR is implemented through a uniform depth increase across the model domain, with a comparison between the implementation of coastal defences or allowing low-lying land to flood. The complex spatial response of the semi-diurnal M2 constituent does not appear to be linear with the imposed SLR. The most predominant features of this response are the generation of new amphidromic systems within the Gulf of Carpentaria and large-amplitude changes in the Arafura Sea, to the north of Australia, and within embayments along Australia's north-west coast. Dissipation from M2 notably decreases along north-west Australia but is enhanced around New Zealand and the island chains to the north. The diurnal constituent, K1, is found to decrease in amplitude in the Gulf of Carpentaria when flooding is allowed. Coastal flooding has a profound impact on the response of tidal amplitudes to SLR by creating local regions of increased tidal dissipation and altering the coastal topography. Our results also highlight the necessity for regional models to use correct open boundary conditions reflecting the global tidal changes in response to SLR.


The Holocene ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 106-124 ◽  
Author(s):  
Thomas SN Oliver ◽  
Colin V Murray-Wallace ◽  
Colin D Woodroffe

Prograded barrier systems record shoreline behaviour and palaeoenvironmental information. The Guichen Bay Holocene embayment fill succession in South Australia has been subject to several prominent studies; however, several important unanswered questions remained regarding the timing of the older ridge sets at this site. Additional Optically Stimulated Luminescence (OSL) dating indicates that progradation commenced in the southeastern corner of the plain ~7300 years ago and was rapid between ~5800 and ~5000 years ago. To augment this record, three OSL dating transects were constructed at nearby Rivoli Bay in the north, central and south. Rapid progradation occurred in the south and then north of the Rivoli plain until ~5000 years ago. Steady progradation occurred in the centre of the plain between ~5000 years ago and present. Rapid shoreline progradation at Guichen and Rivoli Bays before ~5000 years ago was due to the input of sediment from the erosion of Robe and Woakwine Ranges and the inner continental shelf as sea levels rose to present. Raised beach strata imaged with Ground Penetrating Radar (GPR) at Rivoli Bay suggest a sea-level highstand of +2 m above present ~3500 years ago, steadily falling and reaching the present ~1000 years ago. This concurs with evidence from Guichen Bay and may have promoted shoreline progradation. Sediment infilling of Guichen and Rivoli Bays and the fall in sea level restricted the marine corridor between the Woakwine and Robe Ranges to a narrow channel by ~4000 and ~2000 years in the north and south, respectively. Holocene shoreline behaviour was influenced by changing sediment supply and shoreline reorientation with changing wave refraction patterns.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2017 ◽  
Vol 96 (2) ◽  
pp. 183-196 ◽  
Author(s):  
R.F.B. Isarin ◽  
E. Rensink ◽  
G.R. Ellenkamp ◽  
E. Heunks

AbstractFor the first time, geomorphology and archaeology are combined for a 165 km long stretch of the Meuse river, resulting in a geomorphogenetic map (GKM) and a series of archaeological predictive maps (AVM). The maps cover the central part the Meuse valley, located in the province of Limburg between Mook in the north and Eijsden in the south. The area consists of fluvial and aeolian landforms of the Holocene Meuse floodplain and Younger Dryas aged terraces along it, spanning a period of approximately 15,000 years of landscape genesis and human habitation. The GKM more clearly discriminates between map units of Younger Dryas and early Holocene age than in previous mappings of the Meuse valley. The AVM series provide predictive information on the location of sites for four distinct consecutive archaeological periods and four main cultural themes. The maps contribute to a better understanding of landscape processes (fluvial and aeolian geomorphology and the impact of man on river behaviour), and the possibilities for human habitation and land use in prehistoric and historic times.


2012 ◽  
Vol 1 (33) ◽  
pp. 69
Author(s):  
Zheng Bing Wang ◽  
Pingxing Ding

The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel is again divided into the North and South Passage by the Jiuduansha Shoal. This three-level bifurcation and four-outlet configuration appears to be a natural character of the estuary, also in the past (Chen et al., 1982), although the whole system has been extending into the East China Sea in the southeast direction due to the abundant sediment supply from the Yangtze River. Recently, the natural development of the system seems to be substantially disturbed by human interferences, especially the Deep Navigation Channel Project. For the understanding of the behaviour of the bifurcating channel system in the estuary we present analysis on two aspects: (1) the equilibrium configuration of river delta distributary networks, and (2) influence of tidal flow on the morphological equilibrium of rivers. Based on the analyses we conclude that the branching channel structure of the Yangtze Estuary can be classified as tide-influenced river delta distributary networks. Its basic structure is the same as in case of river dominated delta. The empirical relations describing the basic features of the river-dominated distributary delta networks can be explained by theoretical analysis, although they are not fully satisfied by the Yangtze Estuary because of the influence of the tide. Two major influences of the tide are identified, viz. increasing the resistance to the river flow into the sea and increasing the sediment transport capacity. As consequence of these two influences the cross-sectional area of the river/estuary increases in the seawards direction and the bed slope decreases. The insights from the analyses are helpful for the understanding of the impact of the Deep Navigation Channel Project on the large scale morphological development of the estuary.


Sign in / Sign up

Export Citation Format

Share Document