Liquid Screen: A Novel Method To Produce an In-Situ Gravel Pack

SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 437-442 ◽  
Author(s):  
V.O.. O. Ikem ◽  
A.. Menner ◽  
A.. Bismarck ◽  
L.R.. R. Norman

Summary Gravel packs are conventionally used as a permeable solid layer in the annulus between a production screen and the walls of the wellbore in weakly consolidated subterranean formations. Gravel packing is a well-known technique for sand control, whereby unconsolidated fines produced from the soft formation are filtered away from the production fluids. However, gravel packs can be problematic. The bridging of sand particles within the gravel pack can create voids that can result in mechanical failures or significantly reduce the effectiveness of gravel packs to restrain fines from flowing along with the hydrocarbons produced. As an alternative, we present a pioneering method to prepare void-free and mechanically sound permeable barriers in subterranean formations as an alternative to gravel packing. The method of preparation involves the curing of Pickering water-in-oil medium-internal-phase emulsions (MIPEs) or high-internal-phase emulsions (HIPEs) containing monomers in the annular space between a rock formation and pipe. The emulsions were prepared simply by adding low amounts of nonionic surfactant and dispersant to premade Pickering emulsions that were stabilized by oleic-acid (OA) -modified silica particles. The resulting macroporous solid materials, known as “poly(merised)Pickering-M/HIPEs,” have a gas permeability of up to 2.6 darcys and are highly interconnected and permeable to hydrocarbons. This paper shows that it is possible to tailor the gas permeability and mechanical performance of the permeable barrier by altering the emulsion internal-phase volume, the volume of surfactant added to the premade Pickering emulsion, and the composition and constituents of the continuous monomer phase; styrene, divinylbenzene (DVB), and poly(ethylene glycol) dimethacrylate were used in the monomer phase.

2011 ◽  
Vol 201-203 ◽  
pp. 383-387
Author(s):  
Jin Gen Deng ◽  
Yu Chen ◽  
Li Hua Wang ◽  
Wen Long Zhao ◽  
Ping Li

In the design of gravel packing sand control, the reasonable selection of gravel size is one of the keys to implementing sand control measures successfully. Aiming at the defects of commonly used methods of gravel size design and the characteristic that the gravel used in field operation is actually a mixture of gravel with multiple grain diameters, this paper builds a model of pore structure in gravel layer through researching the gravel pack structure caused by the gravel of two grain diameters mixed under actual packing conditions, calculates and analyzes the pore sizes in gravel layer. Ultimately, based on Saucier method, this paper presents a new gravel size optimization idea for gravel packing sand control with multiple grain diameters mixed, which agrees with the actual situation of industrial gravel, and gives the idea’s computing method. Considering the ideality of the model in this paper, the author has modified the computing method to make it more fit for the actual packing situation. This gravel size design method also gives consideration to the impact of formation sand uniformity on sand control effect, so it have the characteristics of good practicability, wide applicability and more accurate than other conventional methods.


2021 ◽  
Author(s):  
Thanawit Ounsakul ◽  
C. W. Graham Grant ◽  
Noppanan Nopsiri ◽  
Katha Wuthicharn

Abstract The ultimate goal of sand control design in producing hydrocarbons is to obtain solids free at lowest cost per barrel. Therefore, predictable production and its associated cost is vital to achieve the best business value. Previously, the prediction of production from sand control well is cumbersome. This paper presents the novel method which using the field data to provide the insight of sand control and deliver an optimal design for the sanding propensity well. Gravel pack sand control designs involves many parameters and is a tedious process for an engineer to interact with several dynamics parameters. This novel method started with field data collection from previous sand control operations. The datasets are prepared into the structured form, then reservoirs are sorted based on their similarities and finally the parameters are selected based on their significance. These parameters are mapped onto the productivity index using a variety of modeling types. The prediction result show that the productivity index can be modeled with high statistic measure (i.e. R-squared). Ultimately, Net Present Value (NPV) derived from anticipated reserves are known before pumping the gravel pack job. The continuous improvement of datasets can significantly help improve the sand control design. In this study, the novel method is presented using field dataset to optimize the sand control design. The design process can be driven with the use of data and machine-learning algorithms. This emerging technology allows greater insight into the day-to-day operations. The continuous adoption of this technology is a key enabler of futuristic industrial 4.0. The data-driven process empowers the oil & gas industry to become more durable, robust and competitive.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1519
Author(s):  
Xingbang Meng ◽  
Minhui Qi ◽  
Zhan Meng ◽  
Tong Li ◽  
Zhongxiao Niu

During the development of unconventional reservoirs with high sand production rate and fine silt content such as heavy oil and hydrate reservoirs, silt sand blockage problem is a serious issue. A two-stage gravel-packing sand control technique is applied to solve the silt sand blockage now. However, traditional experiments on this technique could not obtain the dynamic distribution law of intrusive sand in the gravel pack. In this study, a new visualization experiment based on hydrodynamic similarity criterion for studying particle blockage in gravel packs was conducted. Real-time monitoring of sand particle migration in the gravel pack could be achieved. Also, the stable penetration depth and the distributing disciplinarian of invaded particles could be determined. The results show that when the gravel-to-sand median size ratio of gravel bed I is less than five, the sand bridge can be formed at the front end of the gravel pack. This could prevent sand from further intruding. As the grain size of gravel bed II is increased, the flow velocity is reduced. Thus, the sand invading into gravel bed II tends to settle at the interface. A large amount of sand intrusion can happen to gravel pack II when the pore filling front breaks through the gravel bed I.


2021 ◽  
pp. 1-14
Author(s):  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
Michael Langlais ◽  
Balkrishna Gadiyar ◽  
Glenn Woiceshyn ◽  
...  

Summary For offshore wells requiring sand control, it is beneficial to extend the openhole length to access more reserves with a reduced well count. In challenging environments (e.g., low fracture pressure, highly unconsolidated sand), gravel packing with shunt tubes has been used successfully to virtually ensure a complete pack, thereby minimizing the risk of sand-control failure. Although shunt-tubegravel-pack technologies already exist, several issues must be addressed to gravel pack longer wells. First, the extra volume of gravel passing through shunt-tube manifolds raises erosion concerns. Second, the burst rating of the entire shunt system needs to be increased to allow continuous packing through shunts in a heel-to-toe fashion. Third, higher leakoff through the packed interval might increase gravel concentration, which increases friction and the risk of bridging inside the shunts. This study discusses the development and testing of a modified shunted screen that could extend openhole gravel-packing lengths to more than 7,000 ft with zonal isolation. The first step was to use computational fluid dynamics (CFD) simulations to investigate the erosion-prone areas in our existing conventional shunted-screen-technology (SST) manifold design. The CFD results were then used to modify the manifold and make it more resistant to erosion. Prototypes were manufactured and erosion tests were conducted to validate and qualify the new design for targeted proppant concentrations, flow rates, and treatment volumes. Any weak areas found in the shunt system were modified to enable higher burst pressure. The modified shunt system was then independently tested to quantify the burst limits. The concerns regarding high leakoff, friction, and bridging inside the tubes were first addressed by means of experimentation. The first nozzle distance was then modified according to these results. Verification of the modified system design was performed by means of gravel-pack testing on a full-scale model. It was observed that the proposed enhanced-SST (ESST) had no erosion failure after 450,000 lbm of proppant at a slurry rate of 5 bbl/min. The proposed ESST was successfully tested for 10,000-psi burst pressure after the erosion test. The initial motivation, design changes, and tests that led to the development of the modified system are presented herein.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


2021 ◽  
Vol 9 (11) ◽  
pp. 4076-4090
Author(s):  
Qiulan Tong ◽  
Zeng Yi ◽  
Yaqin Ran ◽  
Xiangyu Chen ◽  
Guangcan Chen ◽  
...  

2015 ◽  
Vol 3 (7) ◽  
pp. 1379-1390 ◽  
Author(s):  
Ailing Li ◽  
Hong Shen ◽  
Huihui Ren ◽  
Chen Wang ◽  
Decheng Wu ◽  
...  

New sol–gel functionalized poly-ethylene glycol (PEGM)/SiO2–CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si–O–Si bonds.


2012 ◽  
Author(s):  
Samir Kumar Dhar ◽  
Ajoy Bora ◽  
Rathnakar Reddy ◽  
Bineet Mund ◽  
Anoop Mishra

Sign in / Sign up

Export Citation Format

Share Document