Practical Optimization of Industrial Gravel Size in Gravel Packed Well

2011 ◽  
Vol 201-203 ◽  
pp. 383-387
Author(s):  
Jin Gen Deng ◽  
Yu Chen ◽  
Li Hua Wang ◽  
Wen Long Zhao ◽  
Ping Li

In the design of gravel packing sand control, the reasonable selection of gravel size is one of the keys to implementing sand control measures successfully. Aiming at the defects of commonly used methods of gravel size design and the characteristic that the gravel used in field operation is actually a mixture of gravel with multiple grain diameters, this paper builds a model of pore structure in gravel layer through researching the gravel pack structure caused by the gravel of two grain diameters mixed under actual packing conditions, calculates and analyzes the pore sizes in gravel layer. Ultimately, based on Saucier method, this paper presents a new gravel size optimization idea for gravel packing sand control with multiple grain diameters mixed, which agrees with the actual situation of industrial gravel, and gives the idea’s computing method. Considering the ideality of the model in this paper, the author has modified the computing method to make it more fit for the actual packing situation. This gravel size design method also gives consideration to the impact of formation sand uniformity on sand control effect, so it have the characteristics of good practicability, wide applicability and more accurate than other conventional methods.

2020 ◽  
Vol 143 (9) ◽  
Author(s):  
Minhui Qi ◽  
Mingzhong Li ◽  
Tiankui Guo ◽  
Yuan Li ◽  
Yanchao Li ◽  
...  

Abstract The two-stage gravel-packing technique has been widely adopted in the development of unconsolidated sandstone reservoirs with high sanding rates and silt contents. Compared with the traditional gravel-packing operation, the lifespan and long-term conductivity of the two-stage gravel pack improve significantly. In the present study, an experimental study was undertaken to determine the dynamic permeability change of two-stage gravel packs during sand production. Thirty-nine groups of flooding tests were carried out with various experimental settings, and the pressure drop of each section (i.e., the sanding section, gravel bed I, and gravel bed II) was monitored dynamically during flooding. The permeability characteristics of each section were used to determine the mechanisms of sanding, pore blockage, and particle remigration under different packing arrangements. Using the proposed experimental setup, a sensitivity analysis was carried out to study the parameters that may affect the permeability of the sand pack, such as the two-stage gravel size, packing length, flooding rate, and silty sand content. Based on the observed permeability recovery phenomena in gravel bed I during the experiments, a dynamic permeability prediction model considering the remigration of deposited particles was proposed. Compared with the traditional deep-bed filtration model and the experimental results, the verification showed that the new model is more suitable for predicting the dynamic permeability of two-stage gravel packs.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Yongge Liu ◽  
Huiqing Liu ◽  
Jian Hou ◽  
Qing Wang ◽  
Kai Dong

The main purpose of this paper is to analyze and compare the influence of nozzle size, uneven gravel packing, packer leakage, and dynamic production process on the inflow control effect. First, a new mathematical model of Inflow control devices (ICDs) completed horizontal well is proposed which has two new features. One feature is that the annulus between the sand control screen and the formation is considered. Therefore, the influence of uneven gravel packing can be simulated by adjusting the permeability distribution along the annulus. The other feature is that it accounts for packer leakage by introducing a new parameter named “leakage factor” into the model. Then, the inflow control efficiency is defined and used to quantitatively characterize the inflow control effect, and the influences of nozzle size, uneven gravel packing, packer leakage, and dynamic production process on inflow control efficiency are analyzed. The results show that the nozzle size and packer leakage have the biggest influence on the inflow control efficiency, and the influence of gravel packing is negligible unless the permeability of the packed gravel along the wellbore is extremely heterogeneous.


2021 ◽  
Vol 62 (3a) ◽  
pp. 48-56
Author(s):  
Quan Anh Tran ◽  
An Hai Nguyen ◽  
Vinh The Nguyen ◽  
Hung Tien Nguyen ◽  

Sand control by gravel packing is by far the most reliable and effective sand control method and is being used worldwide. One of the most important factor for successful operation is gravel size selection which is suitable with properties of well and particle size of sand from the reservoir, also the operation method needs to be considered during study. Due to the variety of different oilfield, the selections of gravel size and operation method are challenges for petroleum engineer and manager. Oil production wells in Song Doc oil field are producing in Miocene and Oligocene with very high rate of sand production; some of the wells were plugged by sand. Therefore, the study on the selections of gravel size and operation method is needed and important. In this study, theory analyzing was used in order to yield advantage and disadvantage of each gravel packing method and their operation. Based on the operating condition on Song Doc field and the availability of equipment on site, gravel packing method by thru-tubing with vent screen was selected. The coil tubing was chosen as the operation method. This is the best sand control method for the Song Doc oil field with low cost and high effectiveness sand control.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1519
Author(s):  
Xingbang Meng ◽  
Minhui Qi ◽  
Zhan Meng ◽  
Tong Li ◽  
Zhongxiao Niu

During the development of unconventional reservoirs with high sand production rate and fine silt content such as heavy oil and hydrate reservoirs, silt sand blockage problem is a serious issue. A two-stage gravel-packing sand control technique is applied to solve the silt sand blockage now. However, traditional experiments on this technique could not obtain the dynamic distribution law of intrusive sand in the gravel pack. In this study, a new visualization experiment based on hydrodynamic similarity criterion for studying particle blockage in gravel packs was conducted. Real-time monitoring of sand particle migration in the gravel pack could be achieved. Also, the stable penetration depth and the distributing disciplinarian of invaded particles could be determined. The results show that when the gravel-to-sand median size ratio of gravel bed I is less than five, the sand bridge can be formed at the front end of the gravel pack. This could prevent sand from further intruding. As the grain size of gravel bed II is increased, the flow velocity is reduced. Thus, the sand invading into gravel bed II tends to settle at the interface. A large amount of sand intrusion can happen to gravel pack II when the pore filling front breaks through the gravel bed I.


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 293-304
Author(s):  
Mazen Y. Kanj ◽  
Younane N. Abousleiman

Summary Well geomechanics and "smart" completion designs in many of Saudi Aramco's fields are essential in supporting the company's efforts to apply the extended-reach and MRC well technologies. MRC wells are being aggressively targeted to optimize development economics, enhance recovery, maximize production, minimize differential drawdown across the sand face, reduce sanding potential, and defer water coning. In addition, many unconsolidated sandstone reservoirs require positive sand-control measures. As such, Expandable Sand Screen (ESS) tubulars have seen a recent surge in applicability for completing conventional and MRC wells in sand-prone, troublesome formations. Today, solid expandable tubulars are being tested on a number of wells in a pseudo-monodiameter structure. Though attractive, the long-term performance of these tools in the Arabian Reservoir environments is yet to be explored. This paper simulates the impact of reservoir production and depletion on expandable tubulars and sand-screen completions when the compacting reservoir behaves as a permeable poroelastic medium. A general poroelastic solution model encompassing a multitude of boundary and initial conditions is discussed in this paper. The model simulates the uniaxial (Ko) testing of solid and hollow geomaterial cylinders (Geertsma 2005). Thus, it helps infer about potential problems that might influence the survivability of "expandables" and disrupt the outflow from the well. The proof cases on reservoir and caprocks presented herein are supported with numerical application, experimental validation, and physical interpretation of the coupled poromechanical processes that are reflected in the anisotropic, time-dependent rock responses during testing. The manuscript also demonstrates that this enhanced approach to modeling visualization will ultimately ease the tractability of the pertinent physical phenomena as well as support the model's computational credibility to engineers and experimentalists in the oil and gas industry. Introduction Many applications in our industry take place in fluid-saturated rocks that exhibit rock matrix anisotropy due to their mode of geological deposition or diagenesis. These applications are commonly subjected to nonisothermal conditions. The theory of anisotropic poroelasticity was developed by Biot (1955), improved by Biot and Willis (1957), and reformulated with applications to civil and petroleum engineering problems by Thompson and Willis (1991) and Abousleiman and Cui (2000), among others. The reformulation of the anisotropic poroelastic theory while using laboratory techniques for the measurements of the anisotropic poromechanical parameters (Scott and Abousleiman 2002) had been of great help in assessing the effects of the parameters anisotropy in a few of the engineering applications. These applications included, for example, borehole and cylinder analyses (Abousleiman and Cui 1998; Kanj et al. 2003) and the Mandel problem (Abousleiman et al. 1996). Sherwood (1993) proposed a modification of the Biot theory of poroelasticity (Biot 1941) to include the chemical potentials of all chemical species, within the pore fluid. Within this context, Sherwood and Bailey (1994) conducted an axisymmetric, plane-strain analysis of shale swelling around a wellbore and extended it to include the case of a finite hollow-cylindrical shale sample being subjected to a hydrostatic state of stress. In a more rigorous approach, chemical effects can be addressed by considering the pore fluid to comprise two constituents, solute and solvent, and appropriately accounting for the solute and solvent transport in and out of the porous matrix (Sherwood 1994; Ekbote and Abousleiman 2005).


2021 ◽  
pp. 1-14
Author(s):  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
Michael Langlais ◽  
Balkrishna Gadiyar ◽  
Glenn Woiceshyn ◽  
...  

Summary For offshore wells requiring sand control, it is beneficial to extend the openhole length to access more reserves with a reduced well count. In challenging environments (e.g., low fracture pressure, highly unconsolidated sand), gravel packing with shunt tubes has been used successfully to virtually ensure a complete pack, thereby minimizing the risk of sand-control failure. Although shunt-tubegravel-pack technologies already exist, several issues must be addressed to gravel pack longer wells. First, the extra volume of gravel passing through shunt-tube manifolds raises erosion concerns. Second, the burst rating of the entire shunt system needs to be increased to allow continuous packing through shunts in a heel-to-toe fashion. Third, higher leakoff through the packed interval might increase gravel concentration, which increases friction and the risk of bridging inside the shunts. This study discusses the development and testing of a modified shunted screen that could extend openhole gravel-packing lengths to more than 7,000 ft with zonal isolation. The first step was to use computational fluid dynamics (CFD) simulations to investigate the erosion-prone areas in our existing conventional shunted-screen-technology (SST) manifold design. The CFD results were then used to modify the manifold and make it more resistant to erosion. Prototypes were manufactured and erosion tests were conducted to validate and qualify the new design for targeted proppant concentrations, flow rates, and treatment volumes. Any weak areas found in the shunt system were modified to enable higher burst pressure. The modified shunt system was then independently tested to quantify the burst limits. The concerns regarding high leakoff, friction, and bridging inside the tubes were first addressed by means of experimentation. The first nozzle distance was then modified according to these results. Verification of the modified system design was performed by means of gravel-pack testing on a full-scale model. It was observed that the proposed enhanced-SST (ESST) had no erosion failure after 450,000 lbm of proppant at a slurry rate of 5 bbl/min. The proposed ESST was successfully tested for 10,000-psi burst pressure after the erosion test. The initial motivation, design changes, and tests that led to the development of the modified system are presented herein.


SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 437-442 ◽  
Author(s):  
V.O.. O. Ikem ◽  
A.. Menner ◽  
A.. Bismarck ◽  
L.R.. R. Norman

Summary Gravel packs are conventionally used as a permeable solid layer in the annulus between a production screen and the walls of the wellbore in weakly consolidated subterranean formations. Gravel packing is a well-known technique for sand control, whereby unconsolidated fines produced from the soft formation are filtered away from the production fluids. However, gravel packs can be problematic. The bridging of sand particles within the gravel pack can create voids that can result in mechanical failures or significantly reduce the effectiveness of gravel packs to restrain fines from flowing along with the hydrocarbons produced. As an alternative, we present a pioneering method to prepare void-free and mechanically sound permeable barriers in subterranean formations as an alternative to gravel packing. The method of preparation involves the curing of Pickering water-in-oil medium-internal-phase emulsions (MIPEs) or high-internal-phase emulsions (HIPEs) containing monomers in the annular space between a rock formation and pipe. The emulsions were prepared simply by adding low amounts of nonionic surfactant and dispersant to premade Pickering emulsions that were stabilized by oleic-acid (OA) -modified silica particles. The resulting macroporous solid materials, known as “poly(merised)Pickering-M/HIPEs,” have a gas permeability of up to 2.6 darcys and are highly interconnected and permeable to hydrocarbons. This paper shows that it is possible to tailor the gas permeability and mechanical performance of the permeable barrier by altering the emulsion internal-phase volume, the volume of surfactant added to the premade Pickering emulsion, and the composition and constituents of the continuous monomer phase; styrene, divinylbenzene (DVB), and poly(ethylene glycol) dimethacrylate were used in the monomer phase.


Author(s):  
Mihail Zver'kov

To the article the results of the theoretical and experimental researches are given on questions of estimates of the dynamic rate effect of raindrop impact on soil. The aim of this work was to analyze the current methods to determine the rate of artificial rain pressure on the soil for the assessment of splash erosion. There are the developed author’s method for calculation the pressure of artificial rain on the soil and the assessment of splash erosion. The study aims to the justification of evaluation methods and the obtaining of quantitative characteristics, prevention and elimination of accelerated (anthropogenic) erosion, the creation and the realization of the required erosion control measures. The paper considers the question of determining the pressure of artificial rain on the soil. At the moment of raindrops impact, there is the tension in the soil, which is called vertical effective pressure. It is noted that the impact of rain drops in the soil there are stresses called vertical effective pressure. The equation for calculation of vertical effective pressure is proposed in this study using the known spectrum of raindrops. Effective pressure was 1.4 Pa for the artificial rain by sprinkler machine «Fregat» and 5.9 Pa for long distance sprinkler DD-30. The article deals with a block diagram of the sequence for determining the effective pressure of rain drops on the soil. This diagram was created by the author’s method of calculation of the effective pressure of rain drops on the soil. The need for an integrated approach to the description of the artificial rain impact on the soil is noted. Various parameters characterizing drop erosion are considered. There are data about the mass of splashed soil in the irrigation of various irrigation machinery and installations. For example, the rate (mass) of splashed soil was 0.28…0.78 t/ha under irrigation sprinkler apparatus RACO 4260–55/701C in the conditions of the Ryazan region. The method allows examining the environmental impact of sprinkler techniques for analyzes of the pressure, caused by raindrops, on the soil. It can also be useful in determining the irrigation rate before the runoff for different types of sprinkler equipment and soil conditions.


GIS Business ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 47-52
Author(s):  
Karam Pal Narwal ◽  
Sonia Jindal

The paper empirically examines the impact of corporate governance on the cash holding of the firms. The components of corporate governance are measured by board size, board meeting, audit committee members, directors remuneration and non executive directors and the cash holding is measured with the log of average cash and size is taken as control variable for the control effect on the dependent variables. Moreover, correlation and panel regression model were employed to examine the relationship between the corporate governance and cash holding. Empirical data was collected from 96 firms over the period of 2004-05 to 2013-14. The results show that directors remuneration and the number of audit committee members positively influence the cash holding and the board size also positively influences the cash holding whereas, the non executive directors and the board meetings do not play any role in enhancing the cash holding.


2020 ◽  
Vol 22 (9) ◽  
pp. 28-34
Author(s):  
Huseynova А.А. ◽  
Vashchinnikova K.D.

Turning to the new educational paradigm, the research paper considers the conditions for ensuring the effective-ness of authentic assessment of students ' achievements within the competence approach and the transition from traditional knowledge control to tests developed on the basis of the theory of pedagogical measurements. Special attention is paid to independent assessment as a tool for stimulating learning activities, as well as to the justifica-tion of the pattern design method used in the develop-ment of measurement tools. The experimental basis of the study is based on the results of an independent assess-ment of educational achievements of students of the sen-ior level of secondary vocational education in social studies in several educational organizations. As a result of the survey of participants in independent testing, the formation of a stable positive learning motivation is not-ed. The relationship with the assessment of the impact on educational motivation is confirmed by the respondents ' attitude to the authentic assessment procedure on the part of participants in the assessment process: school-children, teachers, and parents. As a result, it was re-vealed that all subjects of the educational process evalu-ate the impact of the proposed method of assessment on educational motivation from a positive side.


Sign in / Sign up

Export Citation Format

Share Document