Droplet Formation Through Centrifugal Pumps for Oil-in-Water Dispersions

SPE Journal ◽  
2012 ◽  
Vol 18 (01) ◽  
pp. 172-178 ◽  
Author(s):  
Rosanel Morales ◽  
Eduardo Pereyra ◽  
Shoubo Wang ◽  
Ovadia Shoham

Summary Droplet formation in oil/water flow through a centrifugal pump has been studied, experimentally and theoretically, for the first time. Droplet-size distribution at the pump outlet has been measured for water-continuous flow as a function of pump speed, mixture-flow rate, and water cut. The measured droplet-size distribution strongly depends on the pump speed: the higher the pump speed, the smaller the droplet size. Negligible effects of mixture-flow rate, water cut, and inlet droplet-size distribution have been observed. Turbulent breakup has been identified as the main mechanism for droplet formation. A mechanistic model is developed for the prediction of droplet-size distribution in a centrifugal pump, showing a fair agreement with the acquired experimental data.

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Mo Zhang ◽  
Ramin Dabirian ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Oil–water dispersed flow occurs commonly in the petroleum industry during the production and transportation of crudes. Phase inversion occurs when the dispersed phase grows into the continuous phase and the continuous phase becomes the dispersed phase caused by changes in the composition, interfacial properties, and other factors. Production equipment, such as pumps and chokes, generates shear in oil–water mixture flow, which has a strong effect on phase inversion phenomena. The objective of this paper is to investigate the effects of shear intensity and water cut (WC) on the phase inversion region and also the droplet size distribution. A state-of-the-art closed-loop two phase (oil–water) flow facility including a multipass gear pump and a differential dielectric sensor (DDS) is used to identify the phase inversion region. Also, the facility utilizes an in-line droplet size analyzer (a high speed camera), to record real-time videos of oil–water emulsion to determine the droplet size distribution. The experimental data for phase inversion confirm that as shear intensity increases, the phase inversion occurs at relatively higher dispersed phase fractions. Also the data show that oil-in-water emulsion requires larger dispersed phase volumetric fraction for phase inversion as compared with that of water-in-oil emulsion under the same shear intensity conditions. Experiments for droplet size distribution confirm that larger droplets are obtained for the water continuous phase, and increasing the dispersed phase volume fraction leads to the creation of larger droplets.


Author(s):  
Ramin Dabirian ◽  
Shihao Cui ◽  
Ilias Gavrielatos ◽  
Ram Mohan ◽  
Ovadia Shoham

During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump. This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).


2012 ◽  
Vol 166-169 ◽  
pp. 3056-3059 ◽  
Author(s):  
Fang Xu ◽  
Wei Dong ◽  
Liang Qiang

A new multi-orifice effervescent atomizer used for fire fighting was developed. The droplet size distribution of the spray produced by the nozzle was measured by laser Doppler particle analyzer. And the influence of liquid injection pressure, water flow rate and atomizer internal geometry was studied.


2009 ◽  
Vol 15 (4) ◽  
pp. 367-373 ◽  
Author(s):  
C. Bengoechea ◽  
M.L. López ◽  
F. Cordobés ◽  
A. Guerrero

Oil-in-water (o/w) emulsions stabilized by egg yolk, with a composition similar to those found in commercial mayonnaises or salad dressings, were processed in a semicontinuous device. This specially designed emulsification device consists of, basically, a vessel provided with an anchor impeller, where the continuous phase was initially placed; a pumping system that controls the addition of the oily phase; a rotor-stator unit, where the major breaking of the oily droplets takes place, and a recirculation system. The design allowed the introduction of a rotational rheometer to obtain viscosity data along the emulsification process. The most important advantages of this in-line emulsification device, when compared to discontinuous emulsification equipment, are the possibilities of recording viscosity data along the process and the higher values for the storage, G', and loss moduli, G'', of the resulting emulsions. The influence of egg yolk concentration, agitation speed, and flow rate over the rheological properties (G', G'') as well as droplet size distribution were investigated. Higher protein concentration, agitation speed and flow rate generally produce emulsions with higher G' and G'' values.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


2014 ◽  
Vol 32 (14) ◽  
pp. 1655-1663 ◽  
Author(s):  
Leila Kavoshi ◽  
Mohammad S. Hatamipour ◽  
Amir Rahimi ◽  
Mehdi Momeni

Sign in / Sign up

Export Citation Format

Share Document