Calculation of Temperature in Fracture for Carbon Dioxide Fracturing

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1491-1500 ◽  
Author(s):  
Zhiyuan Wang ◽  
Baojiang Sun ◽  
Xiaohui Sun

Summary Carbon dioxide (CO2) temperature-field models in the wellbore and fracture are proposed to calculate transitions of fluid-phase states and variations of the fluid thermal-physical parameters during CO2 fracturing. The models take two items into account in the formula of the specific enthalpy: the internal energy and the flow work. The flow work is usually ignored for conventional hydraulic fracturing. When computing the CO2 temperature at the bottom of the hole, we find a 3.8°C deviation (well depth of 2000 m, injection temperature: –20°C) if the effects of the flow-work variations on the fluid temperatures are ignored. The phase states of CO2 vary from liquid to the supercritical state, and the position of the phase-state transition moves from inside the wellbore to the fracture. The fluid temperatures in the wellbore and fracture drop rapidly, whereas the pressures rise gradually. The temperature differences between the fracture fluid and the matrix-leakoff zone are small, and the cooling-formation distance increases with time and the injection rate.

SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 345-354 ◽  
Author(s):  
Lorraine E. Sobers ◽  
Martin J. Blunt ◽  
Tara C. LaForce

Summary We developed an injection strategy to recover moderately heavy oil and store carbon dioxide (CO2) simultaneously. Our compositional simulations are founded on pressure/volume/temperature- (PVT-) matched properties of oil found in an unconsolidated deltaic sandstone deposit in the Gulf of Paria, offshore Trinidad. In this region, oil density ranges between 940 and 1010 kg/m3 (9 to 18°API). We use countercurrent injection of gas and water to improve reservoir sweep and trap CO2 simultaneously; water is injected in the upper portion of the reservoir, and gas is injected in the lower portion. The two water-injection rates investigated, 100 and 200 m3/d, correspond to the water-gravity numbers 6.3 to 3.1 for our reservoir properties. We applied this injection strategy using vertical producers with two injection configurations: single vertical injector and a pair of horizontal parallel laterals in a simplified representation of the unconsolidated Forest sand found offshore Trinidad. Twelve simulation runs were conducted, varying injection-gas composition for miscible- and immiscible-gas drives, water-injection rate, and injection-well orientation. Our results show that water-over-gas injection can realize oil recoveries ranging from 17 to 30%. In each instance, more than 50% of injected CO2 remained in the reservoir, with less than 15% of the retained CO2 in the mobile phase.


2014 ◽  
Author(s):  
A.. Augustus ◽  
D.. Alexander

Abstract The geologic sequestration of carbon dioxide (GCS) into depleted reservoirs has been contemplated and tested in several projects globally both for permanent storage of carbon dioxide (CO2) and enhancing oil recovery (EOR). Utilization of geologic sequestration as a mitigation strategy to reduce the effects of anthropogenic CO2 into the atmosphere may be costly without proper incentives. This cost can be lowered when incremental oil is recovered in mature fields because of rising oil prices and possibly earning carbon credits for sequestered CO2. The injection of CO2, for most of the infrastructure should be in place for mature fields. Therefore many EOR coupled with CO2 sequestration projects attempt to maximize the recovery of oil whilst storing as much CO2 as possible. Many oil reservoirs are reaching or have reached their maturity therefore secondary and tertiary methods for EOR have become increasingly important for sustainable volumes of oil to be produced. Reservoir simulators have become increasingly important in the pre-evaluation of these projects for proper reservoir management and evaluation. One of the most critical problems when considering the geologic storage of CO2 is the risk of leakage which can lead to seepage from the storage area. In Trinidad and Tobago (T&T) many reservoirs are highly faulted. Some faults form an integral part of the structural traps whilst others are leaky and provide migration pathways for the injected CO2 to return to surface. A simulation study was conducted using the commercial compositional simulator CMG-GEM. The model described in this paper seeks to optimize the injection of CO2 into an oil reservoir with some degree of compartmentalization due to faulting whilst maximizing the amount of incremental oil that can be produced. One of the main considerations will be to maximize the sweep efficiency below the fracture pressure and fault entry pressure. The model is intended for a type of formation likely to be used for storage in Trinidad. We conducted sensitivity analysis on the injection rate and fault transmissibity in an analogous field to those located offshore Trinidad. It was concluded that faults transmissibility affect the overall production of oil reservoirs. Sealing faults stored less CO2 and had less cumulative production than non sealing faults.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


2012 ◽  
Author(s):  
William R. Howard ◽  
Brian Wong ◽  
Michelle Okolica ◽  
Kimberly S. Bynum ◽  
R. A. James

2020 ◽  
Vol 25 (44) ◽  
pp. 4656-4661 ◽  
Author(s):  
Nikolaos Patelis ◽  
Mikes Doulaptsis ◽  
Stylianos Kykalos ◽  
Eleftherios Spartalis ◽  
Anastasios Maskanakis ◽  
...  

Background: Carbon dioxide (CO2) exists in nature around us. In the middle of the 20th century, the intraluminal injection of CO2 demonstrated similar results to those of Digital Subtraction Angiography (DSA) with an iodinated contrast agent (ICA). Since then, the technology behind CO2 DSA has developed significantly. Objective: The aim of this study is to inform physicians about the unique properties of CO2 and its physiology after intraluminal injection. Methods: An extensive search for English literature on the properties of CO2 and the physiology of intraluminal administration was conducted using Pubmed. Results: There is sufficient literature on the properties of CO2 and the physiology of CO2 DSA. A review of this literature explains what happens to the human organism after the injection of CO2. Conclusions: There is enough evidence that CO2 DSA is both effective, diagnostic and safe, but the properties of CO2 should be taken under consideration as complications occur, although rarely.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Tassahil Messas ◽  
Achraf Messas ◽  
George Kroumpouzos

Genitourinary syndrome of menopause (GSM) causes significant symptomatic aggravation that affects the quality of life (QoL). Vulvovaginal atrophy (VVA), the hallmark of GSM, is managed with topical non-hormonal therapy, including moisturizers and lubricants, and topical estrogen application. Patients not responding/being unsatisfied with previous local estrogen therapies are candidates for a noninvasive modality. Carbon dioxide (CO2) laser therapy, especially the fractionated type (FrCO2), has drawn considerable attention over the past two decades as a non-invasive treatment for GSM. This systematic review describes the accumulated evidence from 40 FrCO2 laser studies (3466 participants) in GSM/VVA. MEDLINE, Scopus and Cochrane databases were searched through April 2021. We analyze the effects of FrCO2 laser therapy on symptoms, sexual function, and QoL of patients with GSM/VVA. As shown in this review, FrCO2 laser therapy for GSM shows good efficacy and safety. This modality has the potential to advance female sexual wellness. Patient satisfaction was high in the studies included in this systematic review. However, there is a lack of level I evidence, and more randomized sham-controlled trials are required. Furthermore, several clinical questions, such as the number of sessions required that determine cost-effectiveness, should be addressed. Also, whether FrCO2 laser therapy may exert a synergistic effect with systemic and/or local hormonal/non-hormonal treatments, energy-based devices, and other modalities to treat GMS requires further investigation. Lastly, studies are required to compare FrCO2 laser therapy with other energy-based devices such as erbium:YAG laser and radiofrequency.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1711
Author(s):  
Mohamed Ahmed Khaireh ◽  
Marie Angot ◽  
Clara Cilindre ◽  
Gérard Liger-Belair ◽  
David A. Bonhommeau

The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Sign in / Sign up

Export Citation Format

Share Document