The Formulation of a Thermal Simulation Model in a Vectorized, General Purpose Reservoir Simulator

Author(s):  
M.C.H. Chien ◽  
H.E. Yardumian ◽  
E.Y. Chung ◽  
W.W. Todd
SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 1977-1990 ◽  
Author(s):  
Mohsen Rezaveisi ◽  
Kamy Sepehrnoori ◽  
Gary A. Pope ◽  
Russell T. Johns

Summary High capillary pressure has a significant effect on the phase behavior of fluid mixtures. The capillary pressure is high in unconventional reservoirs because of the small pores in the rock, so understanding the effect of capillary pressure on phase behavior is necessary for reliable modeling of unconventional shale-gas and tight-oil reservoirs. As the main finding of this paper, first we show that the tangent-plane-distance method cannot be used to determine phase stability and present a rigorous thermodynamic analysis of the problem of phase stability with capillary pressure. Second, we demonstrate that there is a maximum capillary pressure (Pcmax) where calculation of capillary equilibrium using bulk-phase thermodynamics is possible and derive the necessary equations to obtain this maximum capillary pressure. We also briefly discuss the implementation of the capillary equilibrium in a general-purpose compositional reservoir simulator. Two simulation case studies for synthetic gas condensate reservoirs were performed to illustrate the influence of capillary pressure on production behavior for the fluids studied.


2019 ◽  
Vol 26 (1) ◽  
pp. 39-62
Author(s):  
Stanislav O. Bezzubtsev ◽  
Vyacheslav V. Vasin ◽  
Dmitry Yu. Volkanov ◽  
Shynar R. Zhailauova ◽  
Vladislav A. Miroshnik ◽  
...  

The paper proposes the architecture and basic requirements for a network processor for OpenFlow switches of software-defined networks. An analysis of the architectures of well-known network processors is presented − NP-5 from EZchip (now Mellanox) and Tofino from Barefoot Networks. The advantages and disadvantages of two different versions of network processor architectures are considered: pipeline-based architecture, the stages of which are represented by a set of general-purpose processor cores, and pipeline-based architecture whose stages correspond to cores specialized for specific packet processing operations. Based on a dedicated set of the most common use case scenarios, a new architecture of the network processor unit (NPU) with functionally specialized pipeline stages was proposed. The article presents a description of the simulation model of the NPU of the proposed architecture. The simulation model of the network processor is implemented in C ++ languages using SystemC, the open-source C++ library. For the functional testing of the obtained NPU model, the described use case scenarios were implemented in C. In order to evaluate the performance of the proposed NPU architecture a set of software products developed by KM211 company and the KMX32 family of microcontrollers were used. Evaluation of NPU performance was made on the basis of a simulation model. Estimates of the processing time of one packet and the average throughput of the NPU model for each scenario are obtained.


2018 ◽  
Vol 26 ◽  
pp. 179-192
Author(s):  
Xiaoru Wang ◽  
Hongjian Gao ◽  
Shuicai Wu ◽  
Yanping Bai ◽  
Zhuhuang Zhou

Author(s):  
Wei-lin Yi ◽  
Xiao-hang Zhang ◽  
Lu-cheng Ji ◽  
Jiang Chen

The rotating cavities of aero-engine compressors are the main part of secondary air flow system. It is known that there are typical multidisciplinary fluid-thermal-solid coupling characteristics in them. The high precision prediction of disc surface temperature is very important for structure designer to select materials, control blade clearances et al. The aim of this paper is to investigate the aerodynamic-thermal simulation model to obtain the method and tool for reliable temperature prediction. The paper firstly selected publicly available experimental data of two rotating cavity geometries with twin-discs to validate the precision of established fluid-thermal simulation model with the different grids, difference schemes and turbulence models. The results showed that the RNG-KE turbulence model with QUICK scheme has the better simulation precision for flow structure and Nusselt number distribution. Based on the above research, a fluid-thermal-solid coupling simulation of a twin-cavities model which is approaching to the real conditions of aero-engine has been carried out. The wall temperature distribution on inner surface has been obtained and its maximum error comparing with the experimental value is 8°C. Also the results further validated the reliabilities of the flow model, heat transfer model and fluid-thermal-solid coupling model. The paper also shows the flow field structure of rotating cavity for further understanding the internal flow characteristics.


Author(s):  
Lincan Yan ◽  
David Yantek ◽  
Pete Bissert ◽  
Mark Klein

Mine Safety and Health Administration (MSHA) regulations require underground coal mines to use refuge alternatives (RAs) to provide a breathable air environment for 96 hrs. One of the main concerns with the use of mobile RAs is the heat and humidity buildup inside the RA. The accumulation of heat and humidity can result in miners suffering heat stress or even death. To investigate this issue, the National Institute for Occupational Safety and Health (NIOSH) conducted testing on a training ten-person, tent-type, RA in its Safety Research Coal Mine (SRCM) in a test area that was isolated from the mine ventilation system. The test results using sensible and latent heat showed that the average measured air temperature within the RA increased by 20.6°F (11.4°C) and the relative humidity approached 90 %RH. The test results were used to benchmark a thermal simulation model of the tested RA. The validated thermal simulation model predicted the average air temperature inside the RA, at the end of 96 hours, to within 1°F (0.6°C) of the measured average air temperature.


Sign in / Sign up

Export Citation Format

Share Document