scholarly journals Rapid Evaluation of the Permeability of Organic-Rich Shale Using the 3D Intermingled-Fractal Model

SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2175-2187 ◽  
Author(s):  
Caoxiong Li ◽  
Mian Lin ◽  
Lili Ji ◽  
Wenbin Jiang ◽  
Gaohui Cao

Summary Shale possesses abundant micro/nanopores. Most micro/nanopores that exist in organic-rich shale are organic pores and mainly developed in organic matter. The pore distribution in matrix space significantly affects gas percolation and diffusion. Pore-size distribution possesses a self-similar, or fractal, property. The pore space and gas permeability of shale can be easily rebuilt and evaluated, respectively, using fractal theory. In this work, a 3D intermingled-fractal model (3D-IFM) is successfully built using scalable scanning-electron-microscopy (SEM) images of shale samples. 3D-IFM is made up of several components, including organic pores in organic matter and in pyrites, inorganic pores, slits, and matrix. An improved pore-connective-calculation method is also introduced to evaluate the apparent gas permeability of the shale model. The proposed 3D-IFM rapid-permeability-evaluation method for organic-rich shale is valid and useful and considers the main components of shale. This method can rapidly evaluate apparent gas permeability and simplify the apparent-gas-permeability-calculation process. Thus, the method provides a promising means of rapidly evaluating apparent gas permeability.

2014 ◽  
Vol 670-671 ◽  
pp. 258-262 ◽  
Author(s):  
Ji Li ◽  
Xin Wu

Coal is a natural porous media, its porosity and structural integrity influenced the gas adsorption and desorption characteristics greatly, as well as physical and mechanical properties of coal. Scanning electron microscopy (SEM) is applied to acquire SEM image of four kinds of coal samples at different zoom levels, and the box dimension can be worked out based on the pore preprocessing of SEM images. Then, the numerical value of box dimension is used to describe the development degree of the four kinds of coal sample and four development degrees’ sequence. At last, the intrinsic relevance between fractal dimension and other parameters is analyzed through mathematic method. The results show as follows: coal sample has self-similarity characteristic; the fractal dimension is related to both the total number of pores and porosity degree; the data of the coal pore, analyzed through fractal dimension, are consistent with that through traditional method; what’s more, fractal dimension has more advantages in describing accuracy and simplicity.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940014 ◽  
Author(s):  
YU LIU ◽  
YANMING ZHU ◽  
YANG WANG ◽  
SHANGBIN CHEN

Pore structure in shale controls the gas storage mechanism and gas transport behaviors. Since nanoscale pores in shale matrix have fractal characteristics, fractal theory can be used to study its structure. In addition, fractal method has its own advantages to investigate nanopores in shale, especially for the heterogeneity and irregularity of nanopores in shale. In this work, fractal features of nanoscale pores and the implication on methane adsorption capacity of shale were investigated by employing low pressure nitrogen adsorption, scanning electron microscopy (SEM), and methane adsorption experiments. Frenkel–Halsey–Hill (FHH) model was also used to calculate the fractal parameters of nanoscale pores in shale. The results showed that nanoscale pores in 12 shale samples have obvious fractal features. All the fractal curves of these shale samples can be divided into two segments, which are cut off by [Formula: see text], and the fractal dimensions of these two segments vary from 2.48 to 2.92 [Formula: see text] and 2.42 to 2.80 [Formula: see text], respectively. Based on SEM images, it is found that self-similarity of organic pore systems in shales refers to two aspects. One is that relatively large-scale and small-scale pores have similar formation properties and types, which are of elliptical shape with rough surface. The other is that some small-scale pores are formed by rough surface of relatively large pores. The results also demonstrate that methane adsorption capacity of shale samples increase with increasing total organic carbon (TOC) contents. This is mainly because organic matter is rich in pores and has relatively large fractal dimension values. Larger fractal dimensions indicate rougher pore surfaces and could form more small-scale organic pores. These organic pores would provide more space for methane adsorption.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 137
Author(s):  
Guochang Wang ◽  
Shengxiang Long ◽  
Yongmin Peng ◽  
Yiwen Ju

Heterogeneity of organic matter (OM), including size, type, and organic pores within OM, is being recognized along with increasing study using SEM images. Especially, the contribution of organic pores to the entire pore system should be better understood to aid in the evaluation of shale reservoirs. This research observed and quantitatively analyzed over 500 SEM images of 19 core samples from Longmaxi-Wufeng Shale in the eastern Sichuan Basin to summarize the features of OM particles and OM-hosted pores and their evolution during burial. The features of organic pores as well as the embedded minerals within OM particles enables to recognize four different type of OM particles. The organic pore features of each type of OM particles were quantitatively described using parameters such as pore size distribution (PSD), pore geometry, and organic porosity. The PSD of weakly or undeformed porous pyrobitumen indicates that the large organic pores (usually 200 nm to 1 um) is less common than small pores but the major contributor to organic porosity. The organic porosity of OM particles covers a large range of 1–35%, indicating a high heterogeneity among OM particles. Based on analysis of 81 OM particles, the average of organic porosity of the five samples were calculated and ranges from 3% to 12%. In addition, samples from well JY1 have higher organic porosity than JY8. These results helped to reveal how significant the organic pores are for shale gas reservoirs. In addition to presenting many examples of OM particles, this research should significantly improve the understanding of type and evolution of OM particles and contribution of OM-hosted pores to the entire pore system of high to over mature shale.


2014 ◽  
Vol 25 (07) ◽  
pp. 1450021 ◽  
Author(s):  
Mingchao Liang ◽  
Boming Yu ◽  
Li Li ◽  
Shanshan Yang ◽  
Mingqing Zou

In this paper, a fractal model for permeability of porous media is proposed based on Tamayol and Bahrami's method and the fractal theory for porous media. The proposed model is expressed as a function of the mean particle diameter, the length along the macroscopic pressure drop in the medium, porosity, fractal dimensions for pore space and tortuous capillaries, and the ratio of the minimum pore size to the maximum pore size. The relationship between the permeability near the wall and the dimensionless distance from the wall under different conditions is discussed in detail. The predictions by the present fractal model are in good agreement with available experimental data. The present results indicate that the present model may have the potential in comprehensively understanding the mechanisms of flow near the wall in porous media.


Fractals ◽  
2016 ◽  
Vol 24 (01) ◽  
pp. 1650002 ◽  
Author(s):  
MAO SHENG ◽  
GENSHENG LI ◽  
SHOUCENG TIAN ◽  
ZHONGWEI HUANG ◽  
LIQIANG CHEN

Nanopore structure and its multiscale feature significantly affect the shale-gas permeability. This paper employs fractal theory to build a shale-gas permeability model, particularly considering the effects of multiscale flow within a multiscale pore space. Contrary to previous studies which assume a bundle of capillary tubes with equal size, in this research, this model reflects various flow regimes that occur in multiscale pores and takes the measured pore-size distribution into account. The flow regime within different scales is individually determined by the Knudsen number. The gas permeability is an integral value of individual permeabilities contributed from pores of different scales. Through comparing the results of five shale samples, it is confirmed that the gas permeability varies with the pore-size distribution of the samples, even though their intrinsic permeabilities are the same. Due to consideration of multiscale flow, the change of gas permeability with pore pressure becomes more complex. Consequently, it is necessary to cover the effects of multiscale flow while determining shale-gas permeability.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1937
Author(s):  
Tao Wu ◽  
Qian Wang ◽  
Shifang Wang

The investigation of gas transport in fractured porous media is essential in most petroleum and chemical engineering. In this paper, an apparent gas permeability model for real gas flow in fractured porous media is derived with adequate consideration of real gas effect, the roughness of fracture surface, and Knudsen diffusion based on the fractal theory. The fractal apparent gas permeability model is obtained to be a function of micro-structural parameters of fractured porous media, relative roughness, the pressure, the temperature, and the properties of gas. The predictions from the apparent gas permeability model based on the fractal theory match well with the published permeability model and experimental data, which verifies the rationality of the present fractal apparent gas permeability model.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Author(s):  
Shangbin Chen ◽  
Chu Zhang ◽  
Xueyuan Li ◽  
Yingkun Zhang ◽  
Xiaoqi Wang

AbstractIn shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.


Author(s):  
A. S. Roslyakova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov ◽  
R. A. Khamidullin ◽  
N. I. Korobova ◽  
...  

The paper presents a study of the structure and reservoir properties of rocks of the Bazhenov formation in the sections of three wells located in different structural zones of the Priobskoye field. It is shown that the porosity of the samples varies from 0.02% to 6.95%, the absolute gas permeability of the rocks reaches 1.364 mD. It is established that the collectors in the Bazhenov formation are confined to silicite-radiolarites (possessing porosity associated with the leaching of radiolarian shells) and kerogen-clay-siliceous rock and kerogen-clay silicite (porosity is associated with the release of space between the clay-siliceous matrix and kerogen by ripening organic matter). The following secondary processes influenced the formation of voids in these lithotypes: recrystallization of radiolarians and local warming up.


Sign in / Sign up

Export Citation Format

Share Document