scholarly journals Quantitative Modeling of the Effect of Oil on Foam for Enhanced Oil Recovery

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1057-1075 ◽  
Author(s):  
Jinyu Tang ◽  
Mohammed N. Ansari ◽  
William R. Rossen

Summary The effectiveness of foam for mobility control in the presence of oil is key to foam enhanced oil recovery (EOR). A fundamental property of foam EOR is the existence of two steady-state flow regimes: the high-quality regime and the low-quality regime. Experimental studies have sought to understand the effect of oil on foam through its effect on these two regimes. Here, we explore the effect of oil on the two flow regimes for one widely used foam model. The STARS (CMG 2015) foam model includes two algorithms for the effect of oil on foam: In the “wet-foam” model, oil changes the mobility of full-strength foam in the low-quality regime, and in the “dry-out” model, oil alters the limiting water saturation around which foam collapses. We examine their effects as represented in each model on the two flow regimes using a Corey relative permeability function for oil. Specifically, we plot the pressure-gradient contours that define the two flow regimes as a function of superficial velocities of water, gas, and oil, and show how oil shifts behavior in the regimes. The wet-foam model shifts behavior in the low-quality regime with no direct effect on the high-quality regime. The dry-out model shifts behavior in the high-quality regime but not the low-quality regime. At fixed superficial velocities, both models predict multiple steady states at some injection conditions. We perform a stability analysis of these states using a simple 1D simulator with and without incorporating capillary diffusion. The steady state attained after injection depends on the initial state. In some cases, it appears that the steady state at the intermediate pressure gradient is inherently unstable, as represented in the model. In some cases, the introduction of capillary diffusion is required to attain a uniform steady state in the medium. The existence of multiple steady states, with the intermediate one being unstable, is reminiscent of catastrophe theory and of studies of foam generation without oil.

SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Xiaocong Lyu ◽  
Denis Voskov ◽  
Jinyu Tang ◽  
William R. Rossen

Summary Foam injection is a promising enhanced-oil-recovery (EOR) technology that significantly improves the sweep efficiency of gas injection. Simulation of foam/oil displacement in reservoirs is an expensive process for conventional simulation because of the strongly nonlinear physics, such as multiphase flow and transport with oil/foam interactions. In this work, an operator-based linearization (OBL) approach, combined with the representation of foam by an implicit-texture (IT) model with two flow regimes, is extended for the simulation of the foam EOR process. The OBL approach improves the efficiency of the highly nonlinear foam-simulation problem by transforming the discretized nonlinear conservation equations into a quasilinear form using state-dependent operators. The state-dependent operators are approximated by discrete representation on a uniform mesh in parameter space. The numerical-simulation results are validated by using three-phasefractional-flow theory for foam/oil flow. Starting with an initial guess depending on the fitting of steady-state experimental data with oil, the OBL foam model is regressed to experimental observations using a gradient-optimization technique. A series of numerical validation studies is performed to investigate the accuracy of the proposed approach. The numerical model shows good agreement with analytical solutions at different conditions and with different foam parameters. With finer grids, the resolution of the simulation is better, but at the cost of more expensive computations. The foam-quality scan is accurately fitted to steady-state experimental data, except in the low-quality regime. In this regime, the used IT foam model cannot capture the upward-tilting pressure gradient (or apparent viscosity) contours. 1D and 3D simulation results clearly demonstrate two stages of foam propagation from inlet to outlet, as seen in the computed-tomography (CT) coreflood experiments: weak foam displaces most of the oil, followed by a propagation of stronger foam at lower oil saturation. OBL is a direct method to reduce nonlinearity in complex physical problems, which can significantly improve computational performance. Taking its accuracy and efficiency into account, the data-drivenOBL-based approach could serve as a platform for efficient numerical upscaling to field-scaleapplications.


2014 ◽  
Vol 18 (02) ◽  
pp. 273-283 ◽  
Author(s):  
W. R. Rossen ◽  
C. S. Boeije

Summary Foam improves sweep in miscible and immiscible gas-injection enhanced-oil-recovery processes. Surfactant-alternating-gas (SAG) foam processes offer many advantages over coinjection of foam for both operational and sweep-efficiency reasons. The success of a foam SAG process depends on foam behavior at very low injected-water fraction (high foam quality). This means that fitting data to a typical scan of foam behavior as a function of foam quality can miss conditions essential to the success of an SAG process. The result can be inaccurate scaleup of results to field application. We illustrate how to fit foam-model parameters to steady-state foam data for application to injection of a gas slug in an SAG foam process. Dynamic SAG corefloods can be unreliable for several reasons. These include failure to reach local steady state (because of slow foam generation), the increased effect of dispersion at the core scale, and the capillary end effect. For current foam models, the behavior of foam in SAG depends on three parameters: the mobility of full-strength foam, the capillary pressure or water saturation at which foam collapses, and the parameter governing the abruptness of this collapse. We illustrate the fitting of these model parameters to coreflood data, and the challenges that can arise in the fitting process, with the published foam data of Persoff et al. (1991) and Ma et al. (2013). For illustration, we use the foam model in the widely used STARS (Cheng et al. 2000) simulator. Accurate water-saturation data are essential to making a reliable fit to the data. Model fits to a given experiment may result in inaccurate extrapolation to mobility at the wellbore and, therefore, inaccurate predicted injectivity: for instance, a model fit in which foam does not collapse even at extremely large capillary pressure at the wellbore. We show how the insights of fractional-flow theory can guide the model-fitting process and give quick estimates of foam-propagation rate, mobility, and injectivity at the field scale.


2018 ◽  
Vol 10 (2) ◽  
pp. 61
Author(s):  
Tjokorde Walmiki Samadhi ◽  
Utjok W.R. Siagian ◽  
Angga P Budiono

The technical feasibility of using flare gas in the miscible gas flooding enhanced oil recovery (MGF-EOR) is evaluated by comparing the minimum miscibility pressure (MMP) obtained using flare gas to the MMP obtained in the conventional CO2 flooding. The MMP is estimated by the multiple mixing cell calculation method with the Peng-Robinson equation of state using a binary nC5H12-nC16H34 mixture at a 43%:57% molar ratio as a model oil. At a temperature of 323.15 K, the MMP in CO2 injection is estimated at 9.78 MPa. The MMP obtained when a flare gas consisting of CH4 and C2H6 at a molar ratio of 91%:9% is used as the injection gas is predicted to be 3.66 times higher than the CO2 injection case. The complete gas-oil miscibility in CO2 injection occurs via the vaporizing gas drive mechanism, while flare gas injection shifts the miscibility development mechanism to the combined vaporizing / condensing gas drive. Impact of variations in the composition of the flare gas on MMP needs to be further explored to confirm the feasibility of flare gas injection in MGF-EOR processes. Keywords: flare gas, MMP, miscible gas flooding, EORAbstrakKonsep penggunaan flare gas untuk proses enhanced oil recovery dengan injeksi gas terlarut (miscible gas flooding enhanced oil recovery atau MGF-EOR) digagaskan untuk mengurangi emisi gas rumah kaca dari fasilitas produksi migas, dengan sekaligus meningkatkan produksi minyak. Kelayakan teknis injeksi flare gas dievaluasi dengan memperbandingkan tekanan pelarutan minimum (minimum miscibility pressure atau MMP) untuk injeksi flare gas dengan MMP pada proses MGF-EOR konvensional menggunakan injeksi CO2. MMP diperkirakan melalui komputasi dengan metode sel pencampur majemuk dengan persamaan keadaan Peng-Robinson, pada campuran biner nC5H12-nC16H34 dengan nisbah molar 43%:57% sebagai model minyak. Pada temperatur 323.15 K, estimasi MMP yang diperoleh dengan injeksi CO2 adalah 9.78 MPa. Nilai MMP yang diperkirakan pada injeksi flare gas yang berupa campuran CH4-C2H6 pada nisbah molar 91%:9% sangat tinggi, yakni sebesar 3.66 kali nilai yang diperoleh pada kasus injeksi CO2. Pelarutan sempurna gas-minyak dalam injeksi CO2 terbentuk melalui mekanisme dorongan gas menguap (vaporizing gas drive), sementara pelarutan pada injeksi flare gas terbentuk melaui mekanisme kombinasi dorongan gas menguap dan mengembun (vaporizing/condensing gas drive). Pengaruh variasi komposisi flare gas terhadap MMP perlu dikaji lebih lanjut untuk menjajaki kelayakan injeksi flare gas dalam proses MGF-EOR.Kata kunci: flare gas, MMP, miscible gas flooding, EOR


2020 ◽  
Vol 146 ◽  
pp. 02002
Author(s):  
Zachary Paul Alcorn ◽  
Sunniva B. Fredriksen ◽  
Mohan Sharma ◽  
Tore Føyen ◽  
Connie Wergeland ◽  
...  

This paper presents experimental and numerical sensitivity studies to assist injection strategy design for an ongoing CO2 foam field pilot. The aim is to increase the success of in-situ CO2 foam generation and propagation into the reservoir for CO2 mobility control, enhanced oil recovery (EOR) and CO2 storage. Un-steady state in-situ CO2 foam behavior, representative of the near wellbore region, and steady-state foam behavior was evaluated. Multi-cycle surfactant-alternating gas (SAG) provided the highest apparent viscosity foam of 120.2 cP, compared to co-injection (56.0 cP) and single-cycle SAG (18.2 cP) in 100% brine saturated porous media. CO2 foam EOR corefloods at first-contact miscible (FCM) conditions showed that multi-cycle SAG generated the highest apparent foam viscosity in the presence of refined oil (n-Decane). Multi-cycle SAG demonstrated high viscous displacement forces critical in field implementation where gravity effects and reservoir heterogeneities dominate. At multiple-contact miscible (MCM) conditions, no foam was generated with either injection strategy as a result of wettability alteration and foam destabilization in presence of crude oil. In both FCM and MCM corefloods, incremental oil recoveries were on average 30.6% OOIP regardless of injection strategy for CO2 foam and base cases (i.e. no surfactant). CO2 diffusion and miscibility dominated oil recovery at the core-scale resulting in high microscopic CO2 displacement. CO2 storage potential was 9.0% greater for multi-cycle SAGs compared to co-injections at MCM. A validated core-scale simulation model was used for a sensitivity analysis of grid resolution and foam quality. The model was robust in representing the observed foam behavior and will be extended to use in field scale simulations.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1857-1870
Author(s):  
Rodrigo O. Salazar-Castillo ◽  
William R. Rossen

Summary Foam increases sweep efficiency during gas injection in enhanced oil recovery processes. Surfactant alternating gas (SAG) is the preferred method to inject foam for both operational and injectivity reasons. Dynamic SAG corefloods are unreliable for direct scaleup to the field because of core-scale artifacts. In this study, we report fit and scaleup local-equilibrium (LE) data at very-low injected-liquid fractions in a Bentheimer core for different surfactant concentrations and total superficial velocities. We fit LE data to an implicit-texture foam model for scaleup to a dynamic foam process on the field scale using fractional-flow theory. We apply different parameter-fitting methods (least-squares fit to entire foam-quality scan and the method of Rossen and Boeije 2015) and compare their fits to data and predictions for scaleup. We also test the implications of complete foam collapse at irreducible water saturation for injectivity. Each set of data predicts a shock front with sufficient mobility control at the leading edge of the foam bank. Mobility control improves with increasing surfactant concentration. In every case, scaleup injectivity is much better than with coinjection of gas and liquid. The results also illustrate how the foam model without the constraint of foam collapse at irreducible water saturation (Namdar Zanganeh et al. 2014) can greatly underestimate injectivity for strong foams. For the first time, we examine how the method of fitting the parameters to coreflood data affects the resulting scaleup to field behavior. The method of Rossen and Boeije (2015) does not give a unique parameter fit, but the predicted mobility at the foam front is roughly the same in all cases. However, predicted injectivity does vary somewhat among the parameter fits. Gas injection in a SAG process depends especially on behavior at low injected-water fraction and whether foam collapses at the irreducible water saturation, which may not be apparent from a conventional scan of foam mobility as a function of gas fraction in the injected foam. In two of the five cases examined, this method of fitting the whole scan gives a poor fit for the shock in gas injection in SAG. We also test the sensitivity of the scaleup to the relative permeability krw(Sw) function assumed in the fit to data. There are many issues involved in scaleup of laboratory data to field performance: reservoir heterogeneity, gravity, interactions between foam and oil, and so on. This study addresses the best way to fit model parameters without oil for a given permeability, an essential first step in scaleup before considering these additional complications.


SPE Journal ◽  
2013 ◽  
Vol 19 (01) ◽  
pp. 55-68 ◽  
Author(s):  
A.R.. R. Edrisi ◽  
R.N.. N. Gajbhiye ◽  
S.I.. I. Kam

Summary The foam-assisted underbalanced-drilling technique is more advantageous than the traditional overbalanced drilling near the productive water-sensitive formations because of its reduced formation damage, improved rate of penetration, higher cuttings-transport capacity, and lower circulation losses. However, the complicated nature of foam rheology has been a major impediment to the optimal design of field applications. Earlier studies with surfactant foams without oils and polymers show that foam flow in pipe can be represented by two different flow regimes: the low-quality regime showing either plug-flow or segregated-flow pattern, and the high-quality regime showing slug-flow pattern. The objective of this study is to investigate foam-flow characteristics in horizontal pipes at different injection conditions, with or without oils, by using polymer-free and polymer-added surfactant foams. The results of this study were presented in two different ways—by steady-state pressure drops (or, apparent foam viscosity, equivalently) measured by multiple pressure taps and by the visualization of bubble size, size distribution, and flow patterns in transparent pipes. The results with surfactant foams and oil showed that first, oil reduced the stability of foams in pipes, thus decreasing the steady-state pressure drops and foam viscosities, and second, the presence of oil tended to lower the transition between the high-quality and the low-quality regimes (i.e., lower foam quality at the boundary, or lower f*g equivalently). In addition, the results with surfactant foams with polymer showed that first, polymer thickened the liquid phase and, if enough agitation was supplied, could make foams long-lived and increase foam viscosities, and second, the system sometimes did not reach the steady state readily, showing systematic oscillations. In both cases, though, the experiments carried out in this study showed the presence of two distinct high-quality and low-quality flow regimes.


2018 ◽  
Vol 21 (02) ◽  
pp. 344-363 ◽  
Author(s):  
Maghsood Abbaszadeh ◽  
Abdoljalil Varavei ◽  
Fernando Rodriguez-de la Garza ◽  
Antonio Enrique Villavicencio ◽  
Jose Lopez Salinas ◽  
...  

SPE Journal ◽  
2017 ◽  
Vol 22 (03) ◽  
pp. 912-923 ◽  
Author(s):  
B.. Bourbiaux ◽  
E.. Rosenberg ◽  
M.. Robin ◽  
M.. Chabert ◽  
E.. Chevallier ◽  
...  

Summary Waterflooding is often inefficient in carbonate reservoirs because of the presence of fractures and unfavorable wettability. Oil recovery can be improved by enhancing the following drive mechanisms: Capillary imbibition with wettability modifiers Viscous drive by increasing the pressure gradient in the fracture network Water/oil gravity drainage with low-interfacial-tension (IFT) surfactant formulations that also reduce oil trapping This paper presents an experimental approach that evaluates different chemical-enhanced-oil-recovery (EOR) alternatives on the basis of one or several of the three aforementioned recovery mechanisms. The experiments consist of injecting an aqueous chemical solution or a foam containing chemical additives into an artificially fractured carbonate core. The imbibition is monitored with a recent computed-tomography (CT) scanner allowing the local quantitative monitoring of three phases, including accurate quantification of matrix oil recovery. This paper is mainly focused on the impacts of foaming agents and wettability modifiers (WMs), implemented separately or jointly. The experiments have been conducted on several cores of different permeability, resulting in various permeability contrasts between matrix and fracture. A major result concerns the kinetics of oil recovery by chemical additives that is greatly increased when a viscous drive is applied across the matrix medium by means of the circulation of foam in the fracture. Experiments in fractured cores of different permeabilities indicate that foam does not penetrate the matrix, but drives the chemical aqueous phase into the matrix because of the generated pressure gradient. Detailed analysis of oil-mobilization dynamics is provided. These foam-flow experiments are compared with a former chemical imbibition test on a nonfractured core for further insight into the role played by viscous forces. The comparison of tested recovery scenarios leads to conclusions regarding optimal chemical-EOR strategies for naturally fractured carbonate reservoirs with poor secondary-recovery prognosis.


Sign in / Sign up

Export Citation Format

Share Document