Predictive Modelling and Technical Design Application into Effective Casing Wear Operational Management Plan

2021 ◽  
Author(s):  
Q.. Cahill ◽  
R.. Marsh ◽  
D.. Calogero ◽  
B.. Dutta

Abstract Predicting casing wear has often been regarded as an empirical art as there are many influencing factors, including but not limited to the sizes and grades of the drill pipe and casing, type of hardbanding, drilling fluid properties, rate of penetration, trajectory and formation properties. Formations present in offshore Western Australia often contain loose and friable sands which produce highly abrasive cuttings which, when suspended and circulated in drilling fluid, are known to exacerbate casing wear. Casing wear is considerably worse in deviated and multilateral (ML) wells; Woodside's experience drilling ML wells has involved costly non-productive time (NPT) due to the subsequent requirement for remedial tieback systems to maintain well integrity. In 2018 and 2019 three tri-lateral wells were drilled as part of the larger Greater Enfield Project drilling campaign. Each of the multilateral wells were progressively longer and more challenging with regard to casing wear. Previous experience on nearby wells in analogous fields identified casing wear as a significant risk for the project. Further to this, an opportunity was identified to design the longest tri-lateral well as a quad-lateral well, which would allow increased recovery if reservoir quality was poorer than expected. The Drilling and Completion Engineering team were challenged with proving that casing wear could be effectively evaluated and managed during operations to allow a quad-lateral well design if required. Several key areas were investigated in order to effectively manage casing wear. These included: Assessment and measurement of casing manufacturing tolerances;Predictive casing wear modelling using well offsets in conjunction with casing wear software;Casing connection finite element analysis and mechanical hardbanding testing;Full length ultra-sonic testing of casing for wall thickness benchmarking;Hardbanding management plan (which formed part of the overall drill pipe fatigue management plan);Casing wear management plan based on well offsets and casing wear software modelling results, including additional controls such as 'krev' and swarf monitoring;Planning and execution of casing wear logging;Post well evaluation. The casing wear operational plan was effective in monitoring and limiting the amount of wear. It provided confidence to the management team that successful execution of a quad-lateral well was feasible. This paper will describe the steps taken to minimise casing wear, discuss comparisons between the predicted wear and the actual measured casing wear, and provide a recommended workflow for predicting casing wear in future wells where casing wear is a critical factor.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2656 ◽  
Author(s):  
Yunfeng Liu ◽  
Zhengsong Qiu ◽  
Hanyi Zhong ◽  
Zhen Nie ◽  
Jia Li ◽  
...  

Since 2007, heterogeneous, high-viscosity active bituminous formations have often occurred during the drilling process in Yadavaran oilfield (Iran), Halfaya oilfield (Iraq), and tar sands (Canada). The formation of bitumen exhibits plastic and creep properties, and its adhesion is strong, so drilling accidents are easily caused, such as adhering vibrating screen, drill pipe sticking, lost circulation, and even well abandonment. These complex problems cause huge economic losses. Solvents used to dissolve bitumen are a feasible technology to remove bitumen effectively. In order to solve this problem, we used crude bitumen samples from Halfaya oilfield to study the relation between the bitumen component and different solvents. In this study, the temperature, crude bitumen sample to solvent ratio, stirring rate, stirring time, and ultrasound time on bitumen recovery by toluene were investigated by a single factor experiment. The optimum process parameter for bitumen recovery was obtained. Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, and n-pentane were chosen as the solvents for single solvent extraction and composite solvent extraction. The bitumen recovery increased significantly with the use of a composite solvent compared to a single solvent. The composite solvent ratio was 1:1. The highest bitumen recovery was 98.9 wt% by toluene/cyclohexane composite solvent. The SARA (saturates, aromatics, resins, and asphaltenes) components of the bitumen were analyzed. The toluene showed the highest asphaltene content, while the n-alkanes showed the lowest asphaltene content. The higher the asphaltene content, the higher the bitumen recovery. The composite solvent obtained the highest asphaltene content and bitumen recovery. The viscosity of bitumen extraction by different solvents was measured. The lower the bitumen viscosity, the higher the bitumen recovery. The element analysis indicated the solvent’s ability to extract bitumen colloids with the C/H ratio. This study provides a reliable theoretical basis for the subsequent adoption of effective anti-bitumen polluted drilling fluid additives.



2006 ◽  
Vol 11-12 ◽  
pp. 765-0
Author(s):  
Ying An ◽  
Wei Min Yang ◽  
Yang Zhang ◽  
Hui Qing Zhao

Using of rubber non-rotating drill pipe protectors is one of the most important technology measures to reduce the casing wear and rotary torque of drill pipe in case of drilling deep well, ultradeep well, extended reach well and horizontal well. This paper presents the operating principle of protectors, and investigates the effect on contact pressure with the using of protectors by finite element analysis (FEA). The results give out the theoretical foundation of reducing the casing wear and rotary torque of drill pipe by using rubber non-rotating drill pipe protectors.



2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure



2021 ◽  
Author(s):  
Thad Nosar ◽  
Pooya Khodaparast ◽  
Wei Zhang ◽  
Amin Mehrabian

Abstract Equivalent circulation density of the fluid circulation system in drilling rigs is determined by the frictional pressure losses in the wellbore annulus. Flow loop experiments are commonly used to simulate the annular wellbore hydraulics in the laboratory. However, proper scaling of the experiment design parameters including the drill pipe rotation and eccentricity has been a weak link in the literature. Our study uses the similarity laws and dimensional analysis to obtain a complete set of scaling formulae that would relate the pressure loss gradients of annular flows at the laboratory and wellbore scales while considering the effects of inner pipe rotation and eccentricity. Dimensional analysis is conducted for commonly encountered types of drilling fluid rheology, namely, Newtonian, power-law, and yield power-law. Appropriate dimensionless groups of the involved variables are developed to characterize fluid flow in an eccentric annulus with a rotating inner pipe. Characteristic shear strain rate at the pipe walls is obtained from the characteristic velocity and length scale of the considered annular flow. The relation between lab-scale and wellbore scale variables are obtained by imposing the geometric, kinematic, and dynamic similarities between the laboratory flow loop and wellbore annular flows. The outcomes of the considered scaling scheme is expressed in terms of closed-form formulae that would determine the flow rate and inner pipe rotation speed of the laboratory experiments in terms of the wellbore flow rate and drill pipe rotation speed, as well as other parameters of the problem, in such a way that the resulting Fanning friction factors of the laboratory and wellbore-scale annular flows become identical. Findings suggest that the appropriate value for lab flow rate and pipe rotation speed are linearly related to those of the field condition for all fluid types. The length ratio, density ratio, consistency index ratio, and power index determine the proportionality constant. Attaining complete similarity between the similitude and wellbore-scale annular flow may require the fluid rheology of the lab experiments to be different from the drilling fluid. The expressions of lab flow rate and rotational speed for the yield power-law fluid are identical to those of the power-law fluid case, provided that the yield stress of the lab fluid is constrained to a proper value.



Author(s):  
Pankaj Dhaka ◽  
Raghu V. Prakash

Abstract Understanding the effect of load sequence is important in the context of a blade-disc dovetail joint in an aero-engine and many other such applications where, the mating surfaces undergo fretting wear under variable slip amplitude loading conditions. In the present work, a two-dimensional finite element analysis is carried out for a cylinder-on-plate configuration. The cylinder is modeled as deformable whereas the plate is modelled as rigid. An incremental wear modelling algorithm is used to model the wear of cylindrical pad while the plate is assumed as un-worn. This simulates a practical scenario where, generally one of the mating surfaces is sufficiently hardened or an interfacial harder/sacrificial element is inserted to restrict the wear to only one of the surfaces. A Fortran-based ABAQUS® subroutine UMESHMOTION is used to simulate the wear profile for the cylinder. A constant extrapolation technique is used to simulate 18000 cycles of fretting. The finite element analysis results are validated with the analytical solutions and literature data. The fretting wear modelling is carried out for two different slip amplitudes viz., 25 μm and 150 μm, to simulate the low and high slip amplitude loading respectively. Two blocks of alternate low and high slip amplitudes are applied to understand the influence of load sequence. Important contact parameters viz., contact pressure, contact stresses and contact slip are extracted. A comparison is made between the low-high and high-low load sequence based on the contact tractions and worn out profiles.



CORROSION ◽  
1990 ◽  
Vol 46 (9) ◽  
pp. 778-782 ◽  
Author(s):  
M. A. Al-Marhoun ◽  
S. S. Rahman
Keyword(s):  


2021 ◽  
Author(s):  
Manchukarn Naknaka ◽  
Trinh Dinh Phu ◽  
Khamawat Siritheerasas ◽  
Pattarapong Prasongtham ◽  
Feras Abu-Jafar ◽  
...  

Abstract The objective of this research is to describe the methodology used to drill the most extended reach well (ERD) in the Gulf of Thailand. The Jasmine field is a mature, sophisticated, oil field with many shallow reservoir targets that require a minimum 10,000ft horizontal displacement. As such, the main challenges faced, and the novel technology applied is described in detail by this research. The research is an example of successfully drilling a challenging well, safely and efficiently. The Jasmine C – Well X, is a 3-string design structure with an 11-3/4in top hole, an 8-1/2in intermediate section, and a 6-1/8in reservoir horizontal section. Well X was constructed by utilizing an existing platform well slot. The challenge involved drilling from the top hole to the kickoff point and directional drilling away from the casing stump of the existing well to avoid any collision with nearby wells emanating from the Jasmine C platform. The 8-1/2in hole section was the most important segment as it had to reach the landing point precisely in order to start the 6-1/8in section for GeoSteering in the reservoir section. The 8-1/2in section encountered three challenges that could affect drilling efficiency.Directional Drilling – The complexities of the well profile:The method involved making well inclination (INC) lower than 82deg in the tangent interval in order to reduce the well's tortuosity as much as possible.Hole condition – Hole cleaning and fluid losses control:The method involved the use of Low Toxicity Oil Based Mud (LTOBM) CaCO3 system, the chemical elements in the drilling fluid system could help to seal the high permeable zones.Drilling Engineering – Torque and Drag (T&D) control:The method taked into account the 7in casing run to the bottom of the hole, which the casing driven system did not allow for rotation The well was completed successfully without any additional trips. A Total Depth (TD) was of 13,052ftMD was achieved to reach reservoirs at 3,260ft TVDSS. It was therefore announced in 2019 as a new ERD record for Mubadala Thailand (ERD ratio = 3.26, Directional Difficulty Index (DDI) = 6.95). The top hole and 9-5/8in casing were set in the right depth. An 8-1/2in section was accomplished on the planned trajectory with an average on bottom Rate of Penetration (ROP) at 319 ft/hr. The 6-1/8in section was drilled by geosteering to achieve sub-surface objectives. A total of 2,143ft intervals inside the reservoir was successfully achieved. While drilling, lost circulation events occured, but the mud system was conditioned with Lost Circulation Materials (LCM). Therefore, drilling performance was unaffected. Moreover, the Bit's Total Flow Area (TFA) and Rotary steering systems (RSS) flow restrictor was configured to allow directional drilling at a very low Flow rate of 470gpm. Addition, 30 joints of 5-1/2in Heavy Weight Drill Pipe (HWDP) and 39 joints of 4in HWDP were added into the Bottom Hole Assembly (BHA) to transfer string weight to drill bitsand drill to well TD. As complexities of the well profile were fully aware, the casing was runned and minimized the open hole friction until the casing was deployed successfully. In the Gulf of Thailand, drilling the longest ERD well in a shallow True Vertical Depth (TVD) was clearly groundbreaking and entailed the successful management of the key operational challenges related to identification, job planning, design, technology selection, and implementation. This research illuminates the challenges and technical solutions of long ERD well and serves as an example of what can be achieved in the region and globally.



2019 ◽  
Vol 196 ◽  
pp. 00011 ◽  
Author(s):  
Yaroslav Ignatenko ◽  
Andrey Gavrilov ◽  
Oleg Bocharov ◽  
Roland May

The current study is devoted to simulating cuttings transport by drilling fluid through a horizontal section of borehole with an annular cross section. Drill pipe rotates in fixed eccentric position. Steady-state flow is considered. Cuttings are rigid spheres with equal diameters. The carrying fluid is drilling mud with Herschel-Bulkley rheology. Suspension rheology depends on local shear rate and particles concentration. Continuous mixture model with algebraic equation for particles slipping velocity is used. Two hydrodynamic regimes are considered: axial flow without drill pipe rotation and with drill pipe rotation. In the case of axial flow was shown that increasing of power index n and consistency factor k increases pressure gradient and decreases cuttings concentration. Increasing of yield stress leads to increasing of pressure gradient and cuttings concentration. Cuttings concentration achieves constant value for high yield stress and not depends on it. Rotation of the drill pipe significantly changes the flow structure: pressure loss occurs and particles concentration decreases in the cross section. Two basic regimes of rotational flow are observed: domination of primary vortex around drill pipe and domination secondary vorticity structures. Transition between regimes leads to significant changes of flow integral parameters.



Author(s):  
Fabian Lischke ◽  
Andres Tovar

One of the primary challenges faced in Additive Manufacturing (AM) is reducing the overall cost and printing time. A critical factor in cost and time reduction is post-processing of 3D printed (3DP) parts, of which removing support structures is one of the most time consuming steps. Support is needed to prevent the collapse of the part or certain areas under its own weight during the 3D printing process. Currently, the design of self-supported 3DP parts follows a set of empirical guide lines. A trial and error process is needed to produce high quality parts by Fused Depositing Modeling (FDM). The usage of chamfer angle with a max 45° angle form the horizontal for FDM is a common example. Inclined surfaces with a smaller angle are prone to defects, however no theoretical basis has been fully defined, therefore a numerical model is needed. The model can predict the problematic areas at a print, reducing the experimental prints and providing a higher number of usable parts. Physical-based models have not been established due to the generally unknown properties of the material during the AM process. With simulations it is possible to simulate the part at different temperatures with a variety of other parameters that have influence on the behavior of the model. In this research, analytic calculations and physical tests are carried out to determine the material properties of the thermoplastic polymer Acrylonitrile - Butadiene - Styrene (ABS) f or FDM at the time of extrusion. This means that the ABS is going to be extruded at 200°C to 245°C and is a viscous material during part construction. Using the results from the physical and analytical models, i.e., Timoshenko’s modified beam theory for micro-structures, a numerical material model is established to simulate the filament deformation once it is deposited onto the part. Experiments were also used to find the threshold for different geometric specifications, which could then be applied to the numerical model to improve the accuracy of the simulation. The result of the finite element analysis is compared to experiments to show the correlation between the prediction of deflection in simulation and the actual deflection measured in physical experiments. A case study was conducted using an application that optimizes topology of complex geometries. After modeling and simulating the optimized part, areas of defect and errors were determined in the simulation, then verified and and measured with actual 3D prints.



2011 ◽  
Vol 335-336 ◽  
pp. 491-497 ◽  
Author(s):  
Ping Quan Wang ◽  
Zong Xue Yu ◽  
Da Yin ◽  
Hong Jun Liang ◽  
Kun Bin Yang

In order to take exploratory well, production well ( development well), and reservoir p-retection into account. Multi-functional treatment agent used in drilling fluid and completion flui-d which called MFA-1 has been successfully developed by the equilibrium principle of dispersion and accumulation. The result shows that MFA-1 is fluorescenceless and low (no)toxicity. Also, it has many perfect properties such as filtration reducing, lubrication, anti-collapsing, plugging, re-servoir protection, strong anti-temperature (>150°C) ,strong anti-salt,ect. Its whole effect is bett-er than sulphonating asphalts HL-Ⅱ and SAS.So MFA-1 is a good succedaneum of sulphonating asphalts.In more than 20 wells of Tarim Oilfield,drilling fluid and completion fluid which prepared with MFA-1 has been successfully used to solve many problems. Such as drill pipe sticking w-hile testing and the underground complex incidents,ect. As a result,it takes good social benefits a-nd good economic benefits.



Sign in / Sign up

Export Citation Format

Share Document