Hydraulic Fracturing at Clair: Unlocking the Potential of Europe's Largest Reservoir

2022 ◽  
Author(s):  
Alistair Malcolm Roy ◽  
Graeme Henry Allan ◽  
Corrado Giuliani ◽  
Shakeel Ahmad ◽  
Charlotte Giraud ◽  
...  

Abstract The Greater Clair area, Europe's largest oilfield, has two existing platforms, Clair Phase 1 and Clair Ridge, on production with future potential for a third platform targeting undeveloped Lower Clair Group to the South of Ph1. Clair Phase 1 was the initial development of Clair, targeting Lower Clair Group (LCG) reservoir consisting of a complex Devonian sandstone in six units. Most Phase 1 wells penetrated relatively good quality reservoir enhanced by natural fractures, while more recently Clair Ridge wells took a similar approach targeting natural fractures, however that strategy is continually being evaluated. In some areas however low matrix quality and lack of natural fractures were the dominant characteristics resulting in lower production rates. A brief comparison of the range of production outcomes will be presented, including potential downsides of reliance on natural fractures. Given the large oil volumes in areas of known poorer rock quality, alongside variable production results, a hydraulic fracturing trial was initiated in 2017. Well 206/08-A23 (A23) targeted previously under-developed, poor-quality Unit VI within the Phase 1 Graben area where natural fractures are absent. A pre-frac production test established baseline production of 900BOPD in December 2018. The A23 objectives included subsequent hydraulically fracturing the well to test this techniques ability to unlock production from tight, matrix dominated formation. Detailed analysis of core, log and limited vertical well fracturing data (from initial fracturing trials of 1980's vintage), yielded robust designs. Key challenges included overcoming very low KV/KH ratios with fracture heights exceeding 300ft. The resulting detailed designs provided consistent and predictable hydraulic fracturing execution in A23 in 2019, including placement of four planned 500klbs treatments combined with coil clean-outs after each stage to unload solids and fluids from the well. Initial fracture designs were conservative in terms of pad and proppant scheduling which, alongside learnings around operational logistics offshore West of Shetlands and completion design, offer significant optimisations for future hydraulic fractures. Post frac A23 became the highest non-natural fractured producer across Clair. Initially a six-fold production increase was observed with monitoring of transient production ongoing. Tracer analysis confirmed production contribution from all zones. Proving fracturing technology brings opportunities to unlock poorer Phase 1 and Ridge reservoir areas. Additionally, significant portions of the undeveloped Lower Clair Group to the South of Ph1 comprises lower permeability reservoir with higher viscosity oil and reduced natural fracture presence. Hydraulic fracturing is therefore a crucial completion technique for developing this lower quality reservoir and brings significant value enhancement to the project. Efficient delivery of numerous large fractures in a harsh offshore environment West of Shetlands presents significant challenges. The influence of how the A23 fracturing results and learnings are guiding future hydraulic fracturing concept are detailed, including optimising platform engineering design to facilitate efficient fracturing operations while maintaining the required productivity in this challenging scenario.

2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


2021 ◽  
Author(s):  
Ghazal Izadi ◽  
Colleen Barton ◽  
Pierre-Francois Roux ◽  
Tebis Llobet ◽  
Thiago Pessoa ◽  
...  

Abstract For tight reservoirs where hydraulic fracturing is required to enable sufficient fluid mobility for economic production, it is critical to understand the placement of induced fractures, their connectivity, extent, and interaction with natural fractures within the system. Hydraulic fracture initiation and propagation mechanisms are greatly influenced by the effect of the stress state, rock fabric and pre-existing features (e.g. natural fractures, faults, weak bedding/laminations). A pre-existing natural fracture system can dictate the mode, orientation and size of the hydraulic fracture network. A better understanding of the fracture growth phenomena will enhance productivity and also reduce the environmental footprint as less fractures can be created in a much more efficient way. Assessing the role of natural fractures and their interaction with hydraulic fractures in order to account for them in the hydraulic fracture model is achieved by leveraging microseismicity. In this study, we have used a combination of borehole and surface microseismic monitoring to get high vertical resolution locations and source mechanisms. 3D numerical modelling of hydraulic fracturing in complex geological conditions to predict fracture propagation is essential. 3D hydraulic fracturing simulation includes modelling capabilities of stimulation parameters, true 3D fracture propagation with near wellbore 3D complexity including a coupled DFN and the associated microseismic event generation capability. A 3D hydraulic fracture model was developed and validated by matching model predictions to microseismic observations. Microseismic source mechanisms are leveraged to determine the location and geometry of pre-existing features. In this study, we simulate a DFN based on the recorded seismicity of multi stage hydraulic fractures in a horizontal well. The advanced 3D hydraulic fracture modelling software can integrate effectively and efficiently data from a variety of multi-disciplinary sources and scales to create a subsurface characterization of the unconventional reservoir. By incorporating data from 3D seismic, LWD/wireline, core, completion/stimulation monitoring, and production, the software generates a holistic reservoir model embedded in a modular, multi-physics software platform of coupled numerical solvers that capture the fundamental physics of the processes being modelled. This study illustrates the importance of a powerful software tool that captures the necessary physics of stimulation to predict the effects of various completion designs and thereby ensure the most accurate representation of an unconventional reservoir response to a stimulation treatment.


2021 ◽  
Author(s):  
Mostafa Gorjian ◽  
Sepidehalsadat Hendi ◽  
Christopher D. Hawkes

Abstract. This paper presents selected results of a broader research project pertaining to the hydraulic fracturing of oil reservoirs hosted in the siltstones and fine grained sandstones of the Bakken Formation in southeast Saskatchewan, Canada. The Bakken Formation contains significant volumes of hydrocarbon, but large-scale hydraulic fracturing is required to achieve economic production rates. The performance of hydraulic fractures is strongly dependent on fracture attributes such as length and width, which in turn are dependent on in-situ stresses. This paper reviews methods for estimating changes to the in-situ stress field (stress shadow) resulting from mechanical effects (fracture opening), poro-elastic effects, and thermo-elastic effects associated with fluid injection for hydraulic fracturing. The application of this method is illustrated for a multi-stage hydraulic fracturing operation, to predict principal horizontal stress magnitudes and orientations at each stage. A methodology is also presented for using stress shadow models to assess the potential for inducing shear failure on natural fractures. The results obtained in this work suggest that thermo and poro-elastic stresses are negligible for hydraulic fracturing in the Bakken Formation of southeast Saskatchewan, hence a mechanical stress shadow formulation is used for analyzing multistage hydraulic fracture treatments. This formulation (and a simplified version of the formulation) predicts an increase in instantaneous shut-in pressure (ISIP) that is consistent with field observations (i.e., ISIP increasing from roughly 21.6 MPa to values slightly greater than 26 MPa) for a 30-stage fracture treatment. The size of predicted zones of shear failure on natural fractures are comparable with the event clouds observed in microseismic monitoring when assumed values of 115°/65° are used for natural fracture strike/dip; however, more data on natural fracture attributes and more microseismic monitoring data for the area are required before rigorous assessment of the model is possible.


2022 ◽  
Author(s):  
Cong Lu ◽  
Li Ma ◽  
Jianchun Guo

Abstract Hydraulic fracturing technology is an important means to stimulate unconventional reservoirs, and the placement morphology of proppant in cross fractures is a key factor affecting the effect of hydraulic fracturing. It is very important to study the proppant transport law in cross fractures. In order to study the proppant transportation law in cross fractures, based on the CFD-DEM method, a proppant transport model in cross fractures was established. From the two aspects of the flow field in the fractures and the morphology of the proppant dune, the influence of the natural fracture approach angle, the fracturing fluid viscosity and injection rate on the proppant transport is studied. Based on the principle of hydropower similarity, the conductivity of proppant dune under different conditions is quantitatively studied. The results show that the natural fracture approach angle affects the distribution of proppant and fracturing fluid in natural fractures, and further affects the proppant placement morphology in hydraulic fractures and natural fractures. When the fracturing fluid viscosity is low and the displacement is small, the proppant forms a "high and narrow" dune at the entrance of the fracture. With the increase of the fracturing fluid viscosity and injection rate, the proppant settles to form a "short and wide" placement morphology. Compared with the natural fracture approach angle, the fracturing fluid viscosity and injection rate have a more significant impact on the conductivity of proppant dune. This paper investigated the proppant transportation in cross fractures, and quantitatively analyzes the conductivity of proppant dunes with different placement morphology. The results of this study can provide theoretical guidance for the design of hydraulic fracturing.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Peilun Li ◽  
Yan Dong ◽  
Sheng Wang ◽  
Peichao Li

Natural fractures usually develop in shale reservoirs. Thereby, in the process of hydraulic fracturing, it is inevitable that hydraulic fractures will intersect with natural fractures. In order to reveal the interaction mechanism between hydraulic-induced fractures and natural fractures, a two-dimensional fracture intersection model based on the extended finite element method (XFEM) is proposed, and the different types of intersecting criteria reported in the literature are compared. Then, the effects of natural fracture azimuth, fluid pressure in hydraulic fracture, and in situ principal stress difference on hydraulic fracturing are studied in detail. The results show that the fracture morphology is different under different criteria and working conditions. And the stress concentration phenomenon mainly concentrates on the tip in the obtuse angle side of natural fracture. Meanwhile, different fluid pressures in hydraulic fracture can also induce different intersection patterns. The obtained results in this work are of great benefit to understand the intersection mechanism between hydraulic fractures and natural fractures.


2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


2015 ◽  
Vol 55 (1) ◽  
pp. 351
Author(s):  
Alireza Keshavarz ◽  
Alexander Badalyan ◽  
Raymond Johnson ◽  
Pavel Bedrikovetski

A method is proposed for enhancing the conductivity of micro-fractures and cleats around the hydraulically induced fractures in coal bed methane reservoirs. In this technique, placing ultra-fine proppant particles in natural fractures and cleats around hydraulically induced fractures at leak-off conditions keeps the coal cleats open during water-gas production, and this consequently increases the efficiency of hydraulic fracturing treatment. Experimental and mathematical studies for the stimulation of a natural cleat system around the main hydraulic fracture are conducted. In the experimental part, core flooding tests are performed to inject a flow of suspended particles inside the natural fractures of a coal sample. By placing different particle sizes and evaluating the concentration of placed particles, an experimental coefficient is found for optimum proppant placement in which the maximum permeability is achieved after proppant placement. In the mathematical modelling study, a laboratory-based mathematical model for graded proppant placement in naturally fractured rocks around a hydraulically induced fracture is proposed. Derivations of the model include an exponential form of the pressure-permeability dependence and accounts for permeability variation in the non-stimulated zone. The explicit formulae are derived for the well productivity index by including the experimentally found coefficient. Particle placement tests resulted in an almost three-times increase in coal permeability. The laboratory-based mathematical modelling, as performed for the field conditions, shows that the proposed method yields around a six-times increase in the productivity index.


2016 ◽  
Vol 56 (1) ◽  
pp. 225 ◽  
Author(s):  
Kunakorn Pokalai ◽  
David Kulikowski ◽  
Raymond L. Johnson ◽  
Manouchehr Haghighi ◽  
Dennis Cooke

Hydraulic fracturing in tight gas reservoirs has been performed in the Cooper Basin for decades in reservoirs containing high stress and pre-existing natural fractures, especially near faults. The hydraulic fracture is affected by factors such as tortuosity, high entry pressures, and the rock fabric including natural fractures. These factors cause fracture plane rotation and complexities, leading to fracture disconnection or reduced proppant placement during the treatment. In this paper, rock properties are estimated for a targeted formation using well logs to create a geomechanical model. Natural fracture and stress azimuths within the interval were interpreted from borehole image logs. The image log interpretations inferred that fissures are oriented 30–60° relative to the maximum horizontal stress. Next, diagnostic fracture injection test (DFIT) data was used with the poro-elastic stress equations to predict tectonic strains. Finally, the geomechanical model was history-matched with a planar 3D hydraulic fracturing simulator, and gave more insight into fracture propagation in an environment of pre-existing natural fractures. The natural fracture azimuths and calibrated geomechanical model are input into a framework to evaluate varying scenarios that might result based on a vertical or inclined well design. A well design is proposed based on the natural fracture orientation relative to the hydraulic fracture that minimises complexity to optimise proppant placement. In addition, further models and diagnostics are proposed to aid predicting the hydraulically induced fracture geometry, its impact on gas production, and optimising wellbore trajectory to positively interact with pre-existing natural fractures.


2020 ◽  
pp. 014459872096083
Author(s):  
Yulong Liu ◽  
Dazhen Tang ◽  
Hao Xu ◽  
Wei Hou ◽  
Xia Yan

Macrolithotypes control the pore-fracture distribution heterogeneity in coal, which impacts stimulation via hydrofracturing and coalbed methane (CBM) production in the reservoir. Here, the hydraulic fracture was evaluated using the microseismic signal behavior for each macrolithotype with microfracture imaging technology, and the impact of the macrolithotype on hydraulic fracture initiation and propagation was investigated systematically. The result showed that the propagation types of hydraulic fractures are controlled by the macrolithotype. Due to the well-developed natural fracture network, the fracture in the bright coal is more likely to form the “complex fracture network”, and the “simple” case often happens in the dull coal. The hydraulic fracture differences are likely to impact the permeability pathways and the well productivity appears to vary when developing different coal macrolithtypes. Thus, considering the difference of hydraulic fracture and permeability, the CBM productivity characteristics controlled by coal petrology were simulated by numerical simulation software, and the rationality of well pattern optimization factors for each coal macrolithotype was demonstrated. The results showed the square well pattern is more suitable for dull coal and semi-dull coal with undeveloped natural fractures, while diamond and rectangular well pattern is more suitable for semi-bright coal and bright coal with more developed natural fractures and more complex fracturing fracture network; the optimum wells spacing of bright coal and semi-bright coal is 300 m and 250 m, while that of semi-dull coal and dull coal is just 200 m.


Sign in / Sign up

Export Citation Format

Share Document