Reservoir Characterization for Uncertainty Analysis and Its Impact on CO2 Injection and Sequestration in a Depleted Offshore Carbonate Gas Field

2021 ◽  
Author(s):  
Debasis P. Das ◽  
Parimal A. Patil ◽  
Pankaj K. Tiwari ◽  
Renato J Leite ◽  
Raj Deo Tewari

Abstract The emerging global climate change policies have necessitated the strategic need for prudent management of produced contaminants and, with cold flaring being no more the best option, Carbon Capture Utilization & Storage (CCUS) technology provides opportunity for development of high CO2 contaminant fields. A typical CO2 sequestration project comprises capturing CO2 by separating from produced hydrocarbons followed by injection of CO2 into deep geological formations for long term storage. While injection ofCO2 may continue over tens of years, the long-term containment needs to be ascertained for thousands of years. Several geological and geophysical factors along with the existingwells need to be evaluated to assess the potential risks for CO2 leakage that maychallenge the long-term containment. This study considers a depleted carbonate field located offshore Sarawak as a possible long-term CO2 storage site. Elements that may lead to possible leakage of CO2over time are the existing faults or fractures, development of new fractures/faults during injection, caprock failure due to pressures exceeding fracture pressure during/after injection and possible leakage through existing wells. The risk assessment process includes identification and mapping of faults and fracture networks, mapping of seals, evaluation of seismic anomalies and gas while drilling records, pore-pressure analysis, laboratory experiments for analyzing changes in geomechanical & geochemical rock properties and well integrity of existing wells. All these parameters are cross correlated, and qualitative risk categorization is carried out to determine the robustness of the reservoir for long term CO2 storage. The evaluation of available data indicates less frequent faulting occur only towards the flank with no seismic anomalies associated with them. Some seismic anomalies are observed at shallower levels, however their impact on the reservoir and overburden integrity is assessed to be minimum. There are four shale dominated formations mapped in the overburden section, which will act as potential seals. Estimated fracture pressures for the potential seals ranges between 6200-9280 psia for the deepest seal to 2910-4290 psia for the shallowest. Therefore,it is interpreted that if the post injection reservoir pressure is kept below the initial reservoir pressure of 4480 psia, it would not hold any threat to the caprock integrity.Leakage rate riskalong the existing wells was determined based on well log data. Well integrity check of legacywells helped identify two abandoned wells for rigorous remediation to restore their integrity. The subsurface risk analysis is critical to ascertain the long-term containment of injectedCO2. The integrated subsurface characterization and well integrity analysis approach adopted in this work can be applied to any other field/reservoir to validate its robustness for long-term CO2 injection and storage.

2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, Measurement and Verification (MMV) planning of CO2 sequestration is crucial along with geological site selection, transportation and injection process. Several geological formations have been evaluated in the past for potential storage site which divulges the containment capacity of identified large, depleted gas reservoirs as well as long term conformance. Offshore environment makes MMV plan challenging and demands rigorous integration of monitoring technologies to optimize project economic and involved logistics. The role of MMV is critical for sustainability of the CO2 storage project as it ensures that injected CO2 in the reservoir is intact and safely stored for hundreds of years post-injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria. Marine CO2 dispersion study is carried out to confirm the impact of any potential leakage along existing wells and faults, and to understand the CO2 behavior in marine environment in the event of leakage. Study incorporates integration of G&G subsurface and Meta-Ocean & Environment data along with other leakage character information. Multi-Fiber Optic Sensors System (M-FOSS) to be installed in injector wells for monitoring well & reservoir integrity, overburden integrity and monitoring of early CO2 plume migration by acquiring & analyzing the distributed sensing data (DTS/DPS/DAS/DSS). Based on 3D couple modeling, a maximum injection rate of approximately 200 MMscfd of permeate stream produced from a high CO2 contaminated gas field can be achieved. Injectivity studies indicate that over 100 MMSCFD of CO2 injection rates into depleted gas reservoir is possible from a single injector. Injectivity results are integrated with dynamic simulation to determine number and location of injector wells. 3D DAS-VSP simulation results show that a subsurface coverage of approximately 3 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. As planned injector wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume. To overcome this challenge, requirement of surface seismic acquisition survey is recommended for full field monitoring. An integrated MMV plan is designed for cost-effective long-term offshore monitoring of CO2 plume migration. The present study discusses the impacting parameters which make the whole process environmentally sustainable, economically viable and adhering to national and international regulations.


2004 ◽  
Vol 44 (1) ◽  
pp. 677 ◽  
Author(s):  
A.R. Bowden ◽  
A. Rigg

A key challenge to researchers involved with geological storage of CO2 has been to develop an appropriate methodology to assess and compare alternative CO2 injection projects on the basis of risk. Technical aspects, such as the risk of leakage and the effectiveness of the intended reservoir, clearly need to be considered, but so do less tangible aspects such as the value and safety of geological storage of CO2, and potential impacts on the community and environment.The RISQUE method has been applied and found to be an appropriate approach to deliver a transparent risk assessment process that can interface with the wider community and allow stakeholders to assess whether the CO2 injection process is safe, measurable and verifiable and whether a selected alternative delivers cost-effective greenhouse benefits.In Australia, under the GEODISC program, the approach was applied to assess the risk posed by conceptual CO2 injection projects in four selected areas: Dongara, Petrel, Gippsland and Carnarvon. The assessment derived outputs that address key project performance indicators that:are useful to compare projects;include technical, economic and community risk events;assist communication of risk to stakeholders;can be incorporated into risk management design of injection projects; andhelp identify specific areas for future research.The approach is to use quantitative techniques to characterise risk in terms of both the likelihood of identified risk events occurring (such as CO2 escape and inadequate injectivity into the storage site) and of their consequences (such as environmental damage and loss of life). The approach integrates current best practice risk assessment methods with best available information provided by an expert panel.The results clearly showed the relationships between containment and effectiveness for all of the four conceptual CO2 injection projects and indicated their acceptability with respect to two KPIs. Benefit-cost analysis showed which projects would probably be viable considering base-case economics, greenhouse benefits, and also the case after risk is taken into account. A societal risk profile was derived to compare the public safety risk posed by the injection projects with commonly accepted engineering target guidelines used for dams. The levels of amenity risk posed to the community by the projects were assessed, and their acceptability with respect to the specific KPI was evaluated.The risk assessment method and structure that was used should be applied to other potential CO2 injection sites to compare and rank their suitability, and to assist selection of the most appropriate site for any injection project. These sites can be reassessed at any time, as further information becomes available.


2021 ◽  
Author(s):  
Ahmad Ismail Azahree ◽  
Farhana Jaafar Azuddin ◽  
Siti Syareena Mohd Ali ◽  
Muhammad Hamzi Yakup ◽  
Mohd Azlan Mustafa ◽  
...  

Abstract A depleted gas field is selected as CO2 storage site for future high CO2 content gas field development in Malaysia. The reservoir selected is a carbonate buildup of middle to late Miocene age. This paper describes an integrated modeling approach to evaluate CO2 sequestration potential in depleted carbonate gas reservoir. Integrated dynamic-geochemical and dynamic-geomechanics coupled modeling is required to properly address the risks and uncertainties such as, effect of compaction and subsidence during post-production and injection. The main subsurface uncertainties for assessing the CO2 storage potential are (i) CO2 storage capacity due to higher abandonment pressure (ii) CO2 containment due to geomechanical risks (iii) change in reservoir properties due to reaction of reservoir rock with injected CO2. These uncertainties have been addressed by first building the compositional dynamic model adequately history matched to the production data, and then coupling with geomechanical model and geochemical module during the CO2 injection phase. This is to further study on the trapping mechanisms, caprock integrity, compaction-subsidence implication towards maximum storage capacity and injectivity. The initial standalone dynamic modeling poses few challenges to match the water production in the field due to presence of karsts, extent of a baffle zone between the aquifer and producing zones and uncertainty in the aquifer volume. The overall depletion should be matched, since the field abandonment pressure impacts the CO2 injectivity and storage capacity. A reasonably history matched coupled dynamic-geomechanical model is used as base case for simulating CO2 injection. The dynamic-geomechanical coupling is done with 8 stress steps based on critical pressure changes throughout production and CO2 injection phase. Overburden and reservoir properties has been mapped in Geomechanical grid and was run using two difference constitutive model; Mohr's Coulomb and Modified Cam Clay respectively. The results are then calibrated with real subsidence measurement at platform location. This coupled model has been used to predict the maximum CO2 injection rate of 100 MMscf/d/well and a storage capacity of 1.34 Tscf. The model allows to best design the injection program in terms of well location, target injection zone and surface facilities design. This coupled modeling study is used to mature the field as a viable storage site. The established workflow starting from static model to coupled model to forecasting can be replicated in other similar projects to ensure the subsurface robustness, reduce uncertainty and risk mitigation of the field for CO2 storage site.


2021 ◽  
Author(s):  
Parimal A. Patil ◽  
Prasanna Chidambaram ◽  
M Syafeeq B. Ebining Amir ◽  
Pankaj K. Tiwari ◽  
Mahesh S. Picha ◽  
...  

Abstract Ensuring long-term integrity of existing plugged and abandoned (P&A) and active wells that penetrated the selected CO2 storage reservoir is the key to reduce leakage risks along the wellpath for long-term containment sustainability. Restoring the well integrity, when required, will safeguard CO2 containment for decades. Well integrity is often defined as the ability to contain fluids with minimum to nil leakage throughout the project lifecycle. With a view to develop depleted gas fields as CO2 storage sites in offshore Sarawak, it is vital to determine the complexity involved in restoring the integrity of these P&A wells as well as the development wells. Leakage Rate Modeling (LRM) was performed to identify and evaluate the associated risks for designing the remedial action plan to safeguard CO2 storage site. The P&A wells in the identified depleted gas fields were drilled 35–45 years ago and were not designed to withstand high CO2 concentration downhole conditions. Corrosive-Resistant Alloy (CRA) tubulars and CO2 resistant cement were not used during well construction and downhole pressure and temperature conditions may have further degraded the material strength and elevated the corrosion susceptibility. As a proof of concept, single well was selected to assess the loss of containment along the wellbore and to determine the complexity in resorting the well integrity, multiple scenarios were considered in LRM and composite structure and barrier parameters were assigned to estimate possible leakage pathways. Detailed numerical models were simulated for estimating leakage from reservoir to the surface through possible leakage pathways. Risks were identified and remedial action plan was designed for restoring well integrity. Post remedial plan covers Marine CO2 dispersion modeling to design comprehensive monitoring and mitigation plan for potential CO2 leakage in the marine environment. This study summarizes the unique challenge associated with estimating well integrity and re-entering existing P&A wells. Leakage rate modeling along these wells involves uncertainties but when carried out with realistic parameters, it can be used as a predicting tool to determine the nature and complexity of leakage. Integrating with site survey results for any indication of gas bubbling, decision can be made to restoring the well integrity. The paper outlines the detail strategic options to safeguard CO2 storage by restoring well integrity using LRM and integrating with marine CO2 dispersion modeling. Assessing well integrity of P&A wells on individual basis, risk is assessed and identified. Proper remedial actions are proposed accordingly. Quantification of all the uncertainties involved needs to be conducted that may affect long-term security of CO2 storage site.


2020 ◽  
Vol 12 (22) ◽  
pp. 9723
Author(s):  
Chanmaly Chhun ◽  
Takeshi Tsuji

It is important to distinguish between natural earthquakes and those induced by CO2 injection at carbon capture and storage sites. For example, the 2004 Mw 6.8 Chuetsu earthquake occurred close to the Nagaoka CO2 storage site during gas injection, but we could not quantify whether the earthquake was due to CO2 injection or not. Here, changes in pore pressure during CO2 injection at the Nagaoka site were simulated and compared with estimated natural seasonal fluctuations in pore pressure due to rainfall and snowmelt, as well as estimated pore pressure increases related to remote earthquakes. Changes in pore pressure due to CO2 injection were clearly distinguished from those due to rainfall and snowmelt. The simulated local increase in pore pressure at the seismogenic fault area was much less than the seasonal fluctuations related to precipitation and increases caused by remote earthquakes, and the lateral extent of pore pressure increase was insufficient to influence seismogenic faults. We also demonstrated that pore pressure changes due to distant earthquakes are capable of triggering slip on seismogenic faults. The approach we developed could be used to distinguish natural from injection-induced earthquakes and will be useful for that purpose at other CO2 sequestration sites.


2007 ◽  
Vol 47 (1) ◽  
pp. 259 ◽  
Author(s):  
S. Sharma ◽  
P. Cook ◽  
T. Berly ◽  
C. Anderson

Geological sequestration is a promising technology for reducing atmospheric emissions of carbon dioxide (CO2) with the potential to geologically store a significant proportion Australia of Australia’s stationary CO2 emissions. Stationary emissions comprise almost 50% (or about 280 million tonnes of CO2 per annum) of Australia’s total greenhouse gas emissions. Australia has abundant coal and gas resources and extensive geological storage opportunities; it is therefore well positioned to include geosequestration as an important part of its portfolio of greenhouse gas emission mitigation technologies.The Cooperative Research Centre for Greenhouse Gas Technologies is undertaking a geosequestration demonstration project in the Otway Basin of southwest Victoria, with injection of CO2 planned to commence around mid 2007. The project will extract natural gas containing a high percentage of CO2 from an existing gas well and inject it into a nearby depleted natural gas field for long-term storage. The suitability of the storage site has been assessed through a comprehensive risk assessment process. About 100,000 tonnes of CO2 is expected to be injected through a new injection well during a one- to two-year period. The injection of CO2 will be accompanied by a comprehensive monitoring and verification program to understand the behaviour of the CO2 in the subsurface and determine if the injected carbon dioxide has migrated out of the storage reservoir into overlying formations. This project will be the first storage project in Australia and the first in the world to test monitoring for storage in a depleted gas reservoir. Baseline data pertinent to geosequestration is already being acquired through the project and the research will enable a better understanding of long-term reactive transport and trapping mechanisms.This project is being authorised under the Petroleum Act 1998 (Victoria) and research, development and demonstration provisions administered by the Environment Protection Authority (EPA) Victoria in the absence of geosequestration- specific legislation. This highlights the need for such legislation to enable commercial-scale projects to proceed. Community acceptance is a key objective for the project and a consultation plan based on social research has been put in place to gauge public understanding and build support for the technology as a viable mitigation mechanism.


2021 ◽  
Author(s):  
Zamzam Mohammed Ahmed ◽  
Abrar Mohammed Alostad ◽  
Liu Pei Wu

Abstract The North Kuwait Jurassic Gas (NKJG) reservoirs pose productivity challenges due to their geological heterogeneity, complex tectonic settings, high stress anisotropy, high pore pressure, and high bottom-hole temperature. Additionally, high natural fracture intensity in clustered areas play an important role in the wells hydrocarbon deliverability. These challenges are significant in field development starting from well design and stimulation up to production stages. The Gas Field Development Group (GFDG) are introducing for the first time in Kuwait new completion designs at high fracturing intensity; open-hole Multi Stage Completions (MSC), 4.5" Monobores and hybrid completions along with customized and efficient stimulation methods. This development strategy designed to overcome reservoir difficulties and enhance the well performance during initial testing and long-term production phases. At early stages of production, most of the wells were stimulated with simple matrix acidizing jobs and this method was sufficient to reach commercial production in conventional reservoirs. However, the reservoir depletion trend has negatively affected stimulation effectiveness and the wells performance in the recent years; hence, short and long-term solutions introduced to manage the sub-hydrostatic reservoir pressure. Our current focus is on the short-term stimulation solutions as they are relatively easier to apply compared to the long-term solutions that require additional resources, which are not available in the country. As a result, the stimulation methods, specifically the hydraulic fracturing treatments, increased production dramatically compared to previous years and it applied across North Kuwait Fields in conventional and unconventional reservoirs to reach the production targets of 2020-2021. The hydraulic fracturing treatment designs improved during the 2020-2021 fiscal year. The number of operations tripled compared to before and alternative chemical treatments with new fracturing designs implemented. In addition, these treatments executed across different well completions and reservoir properties. The objectives behind each fracturing treatment were different; for example: discovering new areas, re-stimulating under-performing wells, fracturing unconventional reservoirs, etc. Some promising wells did not flow as per expectation after matrix acidizing treatments despite the logs showing good reservoir quality similar to offset wells with good production. After re-stimulating with acid fracturing, the wells performed much better and one of them set a benchmark as the best producer amongst the offset wells. This paper evaluates the gaps in developing NKJG reservoirs, including fracturing treatments and highlights of the pros/cons for each operation, which in future supports the improvement of stimulation job designs. Moreover, it reveals the future requirements that control the operation success and how to reduce the well cleaning time post-fracturing in the event of low reservoir pressure. Finally, it describes how the outcome of the analyses directly assists reaching the production targets; since NKJG's production mainly depends on stimulation techniques.


2021 ◽  
Author(s):  
Vahid Azari ◽  
Hydra Rodrigues ◽  
Alina Suieshova ◽  
Oscar Vazquez ◽  
Eric Mackay

Abstract The objective of this study is to design a series of squeeze treatments for 20 years of production of a Brazilian pre-salt carbonate reservoir analogue, minimizing the cost of scale inhibition strategy. CO2-WAG (Water-Alternating-Gas) injection is implemented in the reservoir to increase oil recovery, but it may also increase the risk of scale deposition. Dissolution of CaCO3 as a consequence of pH decrease during the CO2 injection may result in a higher risk of calcium carbonate precipitation in the production system. The deposits may occur at any location from production bottom-hole to surface facilities. Squeeze treatment is thought to be the most efficient technique to prevent CaCO3 deposition in this reservoir. Therefore, the optimum WAG design for a quarter 5-spot model, with the maximum Net Present Value (NPV) and CO2 storage volume identified from a reservoir optimization process, was considered as the basis for optimizing the squeeze treatment strategy, and the results were compared with those for a base-case waterflooding scenario. Gradient Descent algorithm was used to identify the optimum squeeze lifetime duration for the total lifecycle. The main objective of squeeze strategy optimization is to identify the frequency and lifetime of treatments, resulting in the lowest possible expenditure to achieve water protection over the well's lifecycle. The simulation results for the WAG case showed that the scale window elongates over the last 10 years of production after water breakthrough in the production well. Different squeeze target lifetimes, ranging from 0.5 to 6 million bbl of produced water were considered to optimize the lifetime duration. The optimum squeeze lifetime was identified as being 2 million bbl of protected water, which was implemented for the subsequent squeeze treatments. Based on the water production rate and saturation ratio over time, the optimum chemical deployment plan was calculated. The optimization results showed that seven squeeze treatments were needed to protect the production well in the WAG scenario, while ten treatments were necessary in the waterflooding case, due to the higher water rate in the production window. The novelty of this approach is the ability to optimize a series of squeeze treatment designs for a long-term production period. It adds valuable information at the Front-End Engineering and Design (FEED) stage in a field, where scale control may have a significant impact on the field's economic viability.


Sign in / Sign up

Export Citation Format

Share Document