Data Driven Workflow to Optimize Eagle Ford Unconventional Asset Development Plan Based on Multidisciplinary Data

2021 ◽  
Author(s):  
Tarik Abdelfattah ◽  
Ehsaan Nasir ◽  
Junjie Yang ◽  
Jamar Bynum ◽  
Alexander Klebanov ◽  
...  

Abstract Unconventional reservoir development is a multidisciplinary challenge due to complicated physical system, including but not limited to complicated flow mechanism, multiple porosity system, heterogeneous subsurface rock and minerals, well interference, and fluid-rock interaction. With enough well data, physics-based models can be supplemented with data driven methods to describe a reservoir system and accurately predict well performance. This study uses a data driven approach to tackle the field development problem in the Eagle Ford Shale. A large amount of data spanning major oil and gas disciplines was collected and interrogated from around 300 wells in the area of interest. The data driven workflow consists of: Descriptive model to regress on existing wells with the selected well features and provide insight on feature importance, Predictive model to forecast well performance, and Subject matter expert driven prescriptive model to optimize future well design for well economics improvement. To evaluate initial well economics, 365 consecutive days of production oil per CAPEX dollar spent (bbl/$) was setup as the objective function. After a careful model selection, Random Forest (RF) shows the best accuracy with the given dataset, and Differential Evolution (DE) was used for optimization. Using recursive feature elimination (RFE), the final master dataset was reduced to 50 parameters to feed into the machine learning model. After hyperparameter tuning, reasonable regression accuracy was achieved by the Random Forest algorithm, where correlation coefficient (R2) for the training and test dataset was 0.83, and mean absolute error percentage (MAEP) was less than 20%. The model also reveals that the well performance is highly dependent on a good combination of variables spanning geology, drilling, completions, production and reservoir. Completion year has one of the highest feature importance, indicating the improvement of operation and design efficiency and the fluctuation of service cost. Moreover, lateral rate of penetration (ROP) was always amongst the top two important parameters most likely because it impacts the drilling cost significantly. With subject matter experts’ (SME) input, optimization using the regression model was performed in an iterative manner with the chosen parameters and using reasonable upper and lower bounds. Compared to the best existing wells in the vicinity, the optimized well design shows a potential improvement on bbl/$ by approximately 38%. This paper introduces an integrated data driven solution to optimize unconventional development strategy. Comparing to conventional analytical and numerical methods, machine learning model is able to handle large multidimensional dataset and provide actionable recommendations with a much faster turnaround. In the course of field development, the model accuracy can be dynamically improved by including more data collected from new wells.

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Ashima Malik ◽  
Megha Rajam Rao ◽  
Nandini Puppala ◽  
Prathusha Koouri ◽  
Venkata Anil Kumar Thota ◽  
...  

Over the years, rampant wildfires have plagued the state of California, creating economic and environmental loss. In 2018, wildfires cost nearly 800 million dollars in economic loss and claimed more than 100 lives in California. Over 1.6 million acres of land has burned and caused large sums of environmental damage. Although, recently, researchers have introduced machine learning models and algorithms in predicting the wildfire risks, these results focused on special perspectives and were restricted to a limited number of data parameters. In this paper, we have proposed two data-driven machine learning approaches based on random forest models to predict the wildfire risk at areas near Monticello and Winters, California. This study demonstrated how the models were developed and applied with comprehensive data parameters such as powerlines, terrain, and vegetation in different perspectives that improved the spatial and temporal accuracy in predicting the risk of wildfire including fire ignition. The combined model uses the spatial and the temporal parameters as a single combined dataset to train and predict the fire risk, whereas the ensemble model was fed separate parameters that were later stacked to work as a single model. Our experiment shows that the combined model produced better results compared to the ensemble of random forest models on separate spatial data in terms of accuracy. The models were validated with Receiver Operating Characteristic (ROC) curves, learning curves, and evaluation metrics such as: accuracy, confusion matrices, and classification report. The study results showed and achieved cutting-edge accuracy of 92% in predicting the wildfire risks, including ignition by utilizing the regional spatial and temporal data along with standard data parameters in Northern California.


2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 63-72
Author(s):  
Jorge Iván Pérez Rave ◽  
Favián González Echavarría ◽  
Juan Carlos Correa Morales

The objective of this work is to develop a machine learning model for online pricing of apartments in a Colombian context. This article addresses three aspects: i) it compares the predictive capacity of linear regression, regression trees, random forest and bagging; ii) it studies the effect of a group of text attributes on the predictive capability of the models; and iii) it identifies the more stable-important attributes and interprets them from an inferential perspective to better understand the object of study. The sample consists of 15,177 observations of real estate. The methods of assembly (random forest and bagging) show predictive superiority with respect to others. The attributes derived from the text had a significant relationship with the property price (on a log scale). However, their contribution to the predictive capacity was almost nil, since four different attributes achieved highly accurate predictions and remained stable when the sample change.


Agriculture is one of the cardinal sectors of the Indian Economy. The proposed system offers a methodology to efficiently monitor and control various attributes that affect crop growth and production. The system also uses machine learning along with the Internet of Things (IoT) to predict the crop yield. Various weather conditions such as temperature, humidity, and soil moisture are monitored in real-time using IoT sensors. IoT is also used to regulate the water level in the water tanks, which helps in reducing the wastage of water resources. A machine learning model is developed to predict the yield of the crop based on parameters taken from these sensors. The model uses Random Forest Regressor and gives an accuracy of 87.5%. Such a system provides a simple and efficient way to maintain and monitor the health of the crop.


Author(s):  
R. Meenal ◽  
Prawin Angel Michael ◽  
D. Pamela ◽  
E. Rajasekaran

The complex numerical climate models pose a big challenge for scientists in weather predictions, especially for tropical system. This paper is focused on presenting the importance of weather prediction using machine learning (ML) technique. Recently many researchers recommended that the machine learning models can produce sensible weather predictions in spite of having no precise knowledge of atmospheric physics. In this work, global solar radiation (GSR) in MJ/m2/day and wind speed in m/s is predicted for Tamil Nadu, India using a random forest ML model. The random forest ML model is validated with measured wind and solar radiation data collected from IMD, Pune. The prediction results based on the random forest ML model are compared with statistical regression models and SVM ML model. Overall, random forest machine learning model has minimum error values of 0.750 MSE and R2 score of 0.97. Compared to regression models and SVM ML model, the prediction results of random forest ML model are more accurate. Thus, this study neglects the need for an expensive measuring instrument in all potential locations to acquire the solar radiation and wind speed data.


2020 ◽  
Author(s):  
Nicola Bodini ◽  
Mike Optis

Abstract. The extrapolation of wind speeds measured at a meteorological mast to wind turbine hub heights is a key component in a bankable wind farm energy assessment and a significant source of uncertainty. Industry-standard methods for extrapolation include the power law and logarithmic profile. The emergence of machine-learning applications in wind energy has led to several studies demonstrating substantial improvements in vertical extrapolation accuracy in machine-learning methods over these conventional power law and logarithmic profile methods. In all cases, these studies assess relative model performance at a measurement site where, critically, the machine-learning algorithm requires knowledge of the hub-height wind speeds in order to train the model. This prior knowledge provides fundamental advantages to the site-specific machine-learning model over the power law and log profile, which, by contrast, are not highly tuned to hub-height measurements but rather can generalize to any site. Furthermore, there is no practical benefit in applying a machine-learning model at a site where hub-height winds are known; rather, its performance at nearby locations (i.e., across a wind farm site) without hub-height measurements is of most practical interest. To more fairly and practically compare machine-learning-based extrapolation to standard approaches, we implemented a round-robin extrapolation model comparison, in which a random forest machine-learning model is trained and evaluated at different sites and then compared against the power law and logarithmic profile. We consider 20 months of lidar and sonic anemometer data collected at four sites between 50–100 kilometers apart in the central United States. We find that the random forest outperforms the standard extrapolation approaches, especially when incorporating surface measurements as inputs to include the influence of atmospheric stability. When compared at a single site (the traditional comparison approach), the machine-learning improvement in mean absolute error was 28 % and 23 % over the power law and logarithmic profile, respectively. Using the round-robin approach proposed here, this improvement drops to 19 % and 14 %, respectively. These latter values better represent practical model performance, and we conclude that round-robin validation should be the standard for machine-learning-based, wind-speed extrapolation methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ashish Sharma ◽  
Dhirendra P. Yadav ◽  
Hitendra Garg ◽  
Mukesh Kumar ◽  
Bhisham Sharma ◽  
...  

Bone cancer is considered a serious health problem, and, in many cases, it causes patient death. The X-ray, MRI, or CT-scan image is used by doctors to identify bone cancer. The manual process is time-consuming and required expertise in that field. Therefore, it is necessary to develop an automated system to classify and identify the cancerous bone and the healthy bone. The texture of a cancer bone is different compared to a healthy bone in the affected region. But in the dataset, several images of cancer and healthy bone are having similar morphological characteristics. This makes it difficult to categorize them. To tackle this problem, we first find the best suitable edge detection algorithm after that two feature sets one with hog and another without hog are prepared. To test the efficiency of these feature sets, two machine learning models, support vector machine (SVM) and the Random forest, are utilized. The features set with hog perform considerably better on these models. Also, the SVM model trained with hog feature set provides an F 1 -score of 0.92 better than Random forest F 1 -score 0.77.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin Emil Dumitrescu

Abstract Engine calibration requires detailed feedback information that can reflect the combustion process as the optimized objective. Indicated mean effective pressure (IMEP) is such an indicator describing an engine’s capacity to do work under different combinations of control variables. In this context, it is of interest to find cost-effective solutions that will reduce the number of experimental tests. This paper proposes a random forest machine learning model as a cost-effective tool for optimizing engine performance. Specifically, the model estimated IMEP for a natural gas spark ignited engine obtained from a converted diesel engine. The goal was to develop an economical and robust tool that can help reduce the large number of experiments usually required throughout the design and development of internal combustion engines. The data used for building such correlative model came from engine experiments that varied the spark advance, fuel-air ratio, and engine speed. The inlet conditions and the coolant/oil temperature were maintained constant. As a result, the model inputs were the key engine operation variables that affect engine performance. The trained model was shown to be able to predict the combustion-related feedback information with good accuracy (R2 ≈ 0.9 and MSE ≈ 0). In addition, the model accurately reproduced the effect of control variables on IMEP, which would help narrow the choice of operating conditions for future designs of experiment. Overall, the machine learning approach presented here can provide new chances for cost-efficient engine analysis and diagnostics work.


Sign in / Sign up

Export Citation Format

Share Document