The First Multilateral Well in Eastern Siberia on the Separated Oil Reservoirs

2021 ◽  
Author(s):  
Ruslan Fanisovich Gataullin ◽  
Stanislav Evgen’evich Ter-Saakov ◽  
Evgenij Vladimirovich Nikulin ◽  
Dmitriy Pavlovich Stifeev ◽  
Alexey Vyacheslavovich Filatov

Abstract This article describes engineering and technology solutions developed to successfully construct unconventional and unique horizontal well at the field of Eastern Siberia targeted to two isolated formations with an option to shut-off top Botuobinsky horizon after gas breakthrough and produce oil from underlying Ulakhansky bed further on. As oil-water contact in the lower part of Ulakhansky horizon makes fracturing the well inexpedient, multi hole drilling technology was implemented enabling drainage of the reserves that are far from the main borehole. The main objective of this well is to deplete Botuobinsky horizon subsequently shutting it off and continuing to recover petroleum reserves from Ulakhansky pay zone. Constructing such well is cost-effective, as it requires drilling only one intermediate casing interval instead of two. Accumulated experience of drilling and completing multi hole wells was used to ensure successful well construction; also, geological and stratigraphic data as well as possible complications while drilling Botuobunsky and Ulakhansky formations were analyzed in-depth. The following appliances were selected to meet the objective: –Bottom-hole equipment enabling drilling abrasive formations under conditions of high vibrations;–Special line of drill bits to ensure high ROP and successful sidetracking without additional tripping;–RSS with 152.4 mm drill bit. The goal set by the operating company was achieved through multi-faceted approach to performing the task, efficient cooperation of engineering technical services and continuous monitoring of output data while drilling. All that combined delivered the results listed below: –Sidetracks were carried out in an open horizontal hole without cement plugs and additional tripping for drill bit or BHA.–Minimized bottom-hole equipment failures under condition of increased high-frequency vibrations from bit while drilling hard formations due to implementation of modular PDM with data-transmitting channel.–Minimized bottom-hole equipment failures under condition of increased low-frequency vibrations from drill string with Hard Bending due to improved BHA design and optimized drilling parameters selection.–Liner was effectively run to Botuobinsky and Ulakhansky reservoirs with an option to shut-off the former after depletion and gas breakthrough. This well is the first one targeted at two isolated formations in East Siberia.

2011 ◽  
Vol 51 (1) ◽  
pp. 459
Author(s):  
David Whitby ◽  
Budi Utama ◽  
Richard Reading

Permit TL/2 in the Carnarvon Basin, WA, presents several challenges for top hole drilling and casing running operations. Previous experience showed that drilling the 16” hole section and running 13⅜” casing was typically a time consuming phase of the well due to fluid losses and tight hole conditions, consequently requiring the use of seawater to drill, back reaming, wiper trips and occasional spotting of pills. The initial solution delivered to the operator as an alternative method to get 13⅜” casing to total depth (TD) was to employ a casing drill bit to ream the casing to bottom while also delivering an improved drill-out time. This would be coupled with a sophisticated, unique, reliable and simply operated top drive casing running system that was already installed on the rig. Reviewing the Weatherford Total Depth Solutions team’s systems with cost, time and capabilities analysis, the operator was certain that the application of a complete drilling with casing system (DwC™) would mitigate the known hole problems and yield a safe and more cost-effective surface hole operation, significantly reducing non-productive time (NPT). This paper reviews: the problems that were traditionally encountered during conventional surface hole drilling and casing running operations; the decision-making process that the operator followed prior to employing DwC technology; and, the hazard mitigation and economic benefits realised through a one-way trip to total depth of about 1,000 m TVDRT, which broke to date the longest Weatherford 13⅜” DwC interval globally by the service company and operator.


1984 ◽  
Vol 106 (2) ◽  
pp. 272-277 ◽  
Author(s):  
D. W. Dareing

Bottom-hole assemblies control the vibration response of drill strings because they are much heavier and stiffer than drill pipe. The length of bottom-hole assemblies is also a factor and the present practice of determining drill collar length often leads to natural tuning with drill bit displacement frequencies. As a result, bottom-hole assemblies are unintentionally designed to vibrate. This paper explains the causes of severe drill string vibrations and gives guidelines for controlling them.


2021 ◽  
Vol 9 ◽  
Author(s):  
Deyang Liang ◽  
Zhichuan Guan ◽  
Yuqiang Xu ◽  
Yongwang Liu

Using various tools to obtain downhole data to reach a precise pore pressure model is an important means to predict overpressure. Most downhole tools are connected to the lower end of drill string and move with it. It is necessary to understand the motion state and dynamic characteristics of drill string, which will affect the use of downhole tools. In this paper, a drilling process considering rock-breaking process in vertical wells is simulated using finite element method. In the simulation, gravity is applied to the whole drill string. The contact force between PDC bit and formation is the weight on bit (WOB). And a rotation speed is applied to the upper end of drill string. Analysis of the results shows that the vibration amplitude of bottom hole WOB (contact force between PDC bit and formation, which is the real WOB in drilling process) is bigger than the amplitude of wellhead WOB (acquired through conversion using Hook load, which is on behalf of the WOB obtained on drilling site). Both wellhead WOB and bottom hole WOB decline with a fluctuation in drilling process. In small initial WOB and low rotation speed conditions, the fluctuation of wellhead WOB focuses on low frequency, the fluctuation of bottom hole WOB focus on high frequency, and the phase of them are not identical. In large initial WOB and high rotation speed conditions, the fluctuation of wellhead WOB and bottom hole WOB both become more irregular. As for wellhead torque and bottom hole torque, the fluctuation of them mainly focuses on low frequency. And in high rotation speed conditions, wellhead torque may become negative. The research results are beneficial to the usage of downhole tools.


2021 ◽  
Author(s):  
Buna Rizal Rachman ◽  
Bonar Noviasta ◽  
Timora Wijayanto ◽  
Ramadhan Yoan Mardiana ◽  
Esa Taufik ◽  
...  

Abstract Achieving a number of well targets in M Area is an important objective for MK, one of the oil and gas operators in Indonesia. An economic challenge is present due to marginal gas reservoirs in shallow zone. The conventional swamp rig unit requires significant costs for site preparation work and in some cases no longer fulfils the economic criteria. The objective was to drill the same one-phase well (OPW) architecture as the swamp rig normally drills, but at lower costs using a hydraulic workover unit (HWU). Drilling the 8½-in hole section OPW architecture using HWU was challenging, not only on the equipment rating and capability, but also on the deck space limitation part. The fit-for-purpose directional and logging-while-drilling (LWD) system was utilized in this project consisting of customized low-torque excellent hydraulics drill bit design, a positive displacement motor (PDM) with aggressive bend setting to achieve directional objective (with max 3.8°/30-m dogleg severity), annular-pressure-while-drilling (APWD) measurement to ensure equivalent circulating density (ECD) is maintained, and combined electromagnetic propagation resistivity and sonic slowness measurement coupled with high-speed telemetry measurement-while-drilling (MWD) tool to get an accurate and timely formation evaluation. The HWU deck space limitation was solved by implementing a single combined directional drilling (DD), MWD, mudlogging cabin, in addition to the remote operation control implementation to further reduce carbon footprint. Five wells were drilled safely and successfully in this campaign. Drilling efficiency improved with up to 109% ROP increase as compared to the first well, showing the progressive learning curve and excellent teamwork from all involved parties. The directional bottom hole assembly (BHA) was capable of delivering up to 4–5°/30-m dogleg, not only achieving the directional objective, but also penetrating the reservoir targets with tight tolerances. The drill bit delivered very good ROP, reaching 60.4 m/h (about 66% of average OPW ROP achieved by swamp rig). This campaign also successfully reduced the overall site preparation cost by up to 30%, enabling MK to drill wells that were initially not feasible to be drilled using swamp rig within the time frame and budget. Thanks to the success, this new method is currently under study for industrialization. The HWU drilling campaign provided a valuable learning experience, is considered as a proven drilling method, and served as a benchmark for other operators in Indonesia. HWU drilling has proven to be an efficient drilling method and capable of delivering the one-phase-well. This paper presents a unique case study of new well open hole drilling with the HWU and its applicability in M Area. Most studies in the past were HWU drilling in re-entry or sidetrack cases.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2011 ◽  
Vol 26 (S1) ◽  
pp. s148-s149 ◽  
Author(s):  
K. Ruettger ◽  
W. Lenz

Due to the limited resources of specialized hospital departments, the allocation of patients to different hospitals according to severity is an extraordinarily complex and time-critical problem. The emergency capacity was determined for all medical centers (n = 135) in the State of Hessen, Germany, for patients of various triage categories (red, yellow, green) during normal working hours, and during weekends and nights and included logistic specifications of a potential helicopter landing. These data were entered into a state register. Using the data from the “acute-care-register”, a Ticket System was developed that allows operations management to assign patients according to the severity of their condition, urgency, and specialization requirements (e.g., neurosurgery, ophthalmology, pediatrics) to a hospital without exceeding the admission and/or treatment capacity of the hospital/facility. During a non-critical period, the order of allocations depending on the distance from the clinic is planned in advance so that no further modifications are necessary during the acute intervention phase of an emergency response. Additional notification of hospital capacities for severe casualties provided during the emergency response can be easily and immediately supplemented. Due to the relatively low frequency of such emergency responses, a cost-effective concept that is easily adaptable to the respective fields of application was decided upon. The system is a sticker set customized for the respective rescue teams. The sets will be carried permanently in the rescue equipment by the organization manager of the rescue service team. The equipment is not dependent on electronic components. The cost per sticker set is approximately US$50. Keeping track of the patient allocations is assured.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


2021 ◽  
Author(s):  
Nichnita Tortrakul ◽  
Chatwit Pochan ◽  
Nardthida Kananithikorn ◽  
Thanapong Siripan ◽  
Basil Ching ◽  
...  

Abstract This paper presents a method of reducing equivalent circulating density (ECD) while drilling using eccentric string reamers (ESR) with adjustable gage stabilizer (AGS) in Gulf of Thailand (GoT). Reduced ECD in slimhole is desirable when drilling depleted reservoirs as reduced borehole pressure can reduce or delay drilling fluid loss events. Delaying losses can allow well depth to be increased with the prospect of penetrating otherwise unrealized pay horizons and increasing reserves capture. Several methods of reducing ECD were considered but most solutions included changing drill string and/or casing design specifications with prohibitive cost. A low-cost, low operational-impact solution was needed. Hole-opening is a method of increasing annular clearance, but well delivery requirements of ~4.5 days per well necessitates a one-trip solution without introducing significant ROP reduction or negatively impact bottomhole assembly (BHA) walking tendencies. Further, the preferred solution must be compatible with a high temperature reservoir drilling environment and must not undermine drilling system operational reliability. A simple but controversial tool for hole opening is ESR. ESR’s are simple in that there are no moving parts or cutter blocks to shift, and operating cost is low. They are controversial due to uncertainty that the tool eccentricity and drilling dynamics will successfully open hole to the desired diameter. Given that the intent of this hole-opening application is limited to creating annular clearance for fluid, not mechanical clearance, the eccentric reamer solution was chosen for field trial and potential development. A tool design challenge was to create a reamer geometry with the desired enlargement ratio (6⅛-in. to 6⅞-in.) while drilling, and reliably drift surface equipment and casing without complications. The ESR design must efficiently drill-out cement and float equipment as well as heterogeneous shale/sand/mudstone interbedded formation layers without significant vibration. If successful, the enlarged hole diameter will increase annular clearance, reduce ECD, improve hole cleaning, and allow drilling depth to be increased to capture additional reserves The plug and play functionality of the ESR required no changes to the existing rig site procedures in handling and making up the tool. The ESR drifts the casing and drills cement and shoe track with normal parameters. The ESR is run with standard measurements-while-drilling (MWD)/logging-while-drilling (LWD) AGS BHA and is able to reduce ECD providing the opportunity to drill deeper and increase barrel of oil equivalent (BOE) per each wellbore. Performance analysis has shown no negative effect on drilling performance and BHA walking tendency. The novelty of this ESR application is its proven ability to assist in increasing reserves capture in highly depleted reservoirs. The ESR is performing very efficiently (high ROP) and reliability is outstanding. In this application, the ESR is a very cost-effective and viable solution for slimhole design.


Author(s):  
A.M. Svalov ◽  

The influence of small-size inclusion of pipes in a well column on the natural frequency of its longitudinal vibrations is investigated. Using the asymptotic expansion in a small parameter, an analytical relation is obtained that describes the change in the period of the column oscillations in the form of some additional small term to the period of the homogeneous column oscillations. Numerical calculations show that the obtained analytical relations almost accurately describe the oscillation period of a column with a massive compact inclusion, while its difference from the oscillation period of a homogeneous column is within ~20%. The results obtained can be useful for preventing resonant phenomena in the drill string when drilling wells, as well as for optimal use of the longitudinal vibrations of the tubing string to influence the bottom-hole zones of producing wells.


Sign in / Sign up

Export Citation Format

Share Document