Flow Assurance and Thermodynamic Challenges of operating CO2 Pipelines for variations in terrains and environments

2021 ◽  
Author(s):  
Terence George Wood ◽  
Scott Campbell ◽  
Nathan Smith

Abstract The requirement for capturing and storing Carbon Dioxide will continue to grow in the next decade and a fundamental part of this is being able to transport the fluid over large geographical distances in numerous terrains and environments. The evolving nature of the fluid supply and the storage characteristics ensure the operation of the pipeline remains a challenge throughout its operational life. This paper will examine the impact of changes in the fluid composition, storage locations, ambient conditions and the various operating modes the pipeline will see throughout the lifecycle, highlight the technical design and operational challenges and finally give guidance on future developments. The thermodynamic behaviour of CO2 with and without impurities will be demonstrated utilising the fluid characterisation software, MultiflashTM. The fluid behaviour and hydraulic performance will be calculated over the expected operational envelope of the pipeline throughout field life, highlighting the benefits and constraints of using the single component module in OLGATM whilst comparing against a compositional approach when dealing with impurities. The paper will demonstrate through two case studies of varying nature including geographical environment, storage location (aquifer vs. abandoned hydrocarbon reservoir) and ambient conditions, the following issues: The impact of the storage type on the pipeline operations and how this will evolve with time; The environmental conditions and the impact these have on selection of process equipment and operational procedures (i.e. shutdown); and The impact the CO2 composition has on the design of the CO2 pipeline, and The paper will conclude with a set of guidelines for undertaking design analysis of CO2 pipelines for variations in fluid composition, storage locations and ambient conditions as well as some key operational strategies. This paper utilises the current state of the art tools and how these evolving tools are making this technically challenging area more mainstream.

Author(s):  
Rainer Kurz ◽  
Grant Musgrove ◽  
Klaus Brun

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on performance, as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions of the blade surface. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, as well as airfoils that were wet from ingested water, as well as different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing that for a certain amount of wet film thickness, the shear forces actually wash the dust downstream, and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.


2009 ◽  
Vol 145-146 ◽  
pp. 177-180 ◽  
Author(s):  
Roger Loo ◽  
Andriy Hikavyy ◽  
Frederik E. Leys ◽  
Masayuki Wada ◽  
Kenichi Sano ◽  
...  

Several device concepts have been further evaluated after the successful implementation of epitaxial Si, SiGe and/or Si:C layers. Most of the next device generations will put limitations on the thermal budget of the deposition processes without making concessions on the epitaxial layer quality. In this work we address the impact of ex-situ wet chemical cleans and in-situ pre-epi bake steps, which are required to obtain oxide free Si surfaces for epitaxial growth. The combination of defect measurements, Secondary Ion Mass Spectroscopy, photoluminescence, lifetime measurements, and electrical diode characterization gives a very complete overview of the performance of low-temperature pre-epi cleaning methods. Contamination at the epi/substrate interface cannot be avoided if the pre-epi bake temperature is too low. This interface contamination is traceable by the photoluminescence and lifetime measurements. It may affect device characteristics by enhanced leakage currents and eventually by yield issues due to SiGe layer relaxation or other defect generation. A comparison of state of the art 200 mm and 300 mm process equipment indicates that for the same thermal budgets the lowest contamination levels are obtained for the 300 mm equipments.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 680
Author(s):  
Giuseppe Olivieri ◽  
René H. Wijffels ◽  
Antonio Marzocchella ◽  
Maria Elena Russo

Saccharification of lignocellulosic biomass is a fundamental step in the biorefinery of second generation feedstock. The physicochemical and enzymatic processes for the depolymerization of biomass into simple sugars has been achieved through numerous studies in several disciplines. The present review discusses the development of technologies for enzymatic saccharification in industrial processes. The kinetics of cellulolytic enzymes involved in polysaccharide hydrolysis has been discussed as the starting point for the design of the most promising bioreactor configurations. The main process configurations—proposed so far—for biomass saccharification have been analyzed. Attention was paid to bioreactor configurations, operating modes and possible integrations of this operation within the biorefinery. The focus is on minimizing the effects of product inhibition on enzymes, maximizing yields and concentration of sugars in the hydrolysate, and reducing the impact of enzyme cost on the whole process. The last part of the review is focused on an emerging process based on the catalytic action of laccase applied to lignin depolymerization as an alternative to the consolidated physicochemical pretreatments. The laccases-based oxidative process has been discussed in terms of characteristics that can affect the development of a bioreactor unit where laccases or a laccase-mediator system can be used for biomass delignification.


2019 ◽  
Vol 103 ◽  
pp. 02001 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

This paper illustrates the impact of embedding an insulation layer of variable thermal conductivity in a typical building wall on the cooling effect and energy performance. The evaluation was performed by applying a conjugate heat transfer model, which was tested in extremely hot conditions of Al Ain (UAE). The thermal performance of a building incorporating insulation layers of variable thermal conductivity (k-value) was compared to a non-variable thermal conductivity system by quantifying the additional heat transferred due to the k-relationship with time. The results show that, when the k-value is a function of operating temperature, its effects on the temperature profile through the wall assembly during daytime is significant compared with that obtained when a constant k-value for the polystyrene (EPS) insulation is adopted. A similar trend in the evolution of temperatures during the day and across the wall section was observed when EPS material with different moisture content was evaluated. For the polyurethane insulation, the inner surface temperature reached 44 °C when constant k-value was adopted, increasing to 48.5 °C when the k-value was allowed to vary under the same ambient conditions.


Resources ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 116
Author(s):  
Mariusz Jedliński ◽  
Mariusz Sowa

Despite the commonly observed trend towards mechanization and automation of operational processes, the potential benefits of wooden pallets as an essential element of the infrastructure of logistic processes are often overlooked in considerations related to sustainable development. Aspects that are mentioned more often include the very idea of the economy itself (circular economy), characteristics of logistics (green), features of the supply chain itself (sustainable) or expectations towards transport (ecological). The authors believe that the idea of total cost of ownership (TCO) in relation to wooden pallets can be a key component of holistic thinking in terms of sustainable development. In a situation where in relation to logistics, reasonable expectations for developing sustainable supply chains are made, paying attention to such a common logistic facility, namely a cargo pallet, which is given so little attention in research, is, in the opinion of the authors, absolutely justified. Therefore, the article presents an original approach to the problem of aggregation of all costs that cargo pallets generate in their operational life cycle, using the total cost of ownership (TCO) analysis methodology. The main goal of the article, however, is to show that the total cost of ownership of a pallet (not only owning it) can become an effective tool used to significantly reduce the costs of logistic activity of enterprises (as well as whole supply chains) and support the idea of sustainable development in practice. Using the primary data from questionnaire research, the focus was on considerations that were of identification character (cognitive and explanatory considerations), which are typical for basic research that aims to explain given phenomena. Thus, the presented cognitive process covers two main areas, namely: the general theory of sustainable development and the specificity of wooden pallets as carriers used in goods trading in terms of their total costs of ownership.


2021 ◽  
Vol 8 (1) ◽  
pp. C45-C49
Author(s):  
O. Povstyanoy ◽  
A. MacMillan

Up-to-date directions in the development of modern industry increase the requirements for the quality of technical products. The design and manufacture of competitive process equipment require accuracy, productivity, and efficiency. Therefore, in this article, a new mechatronic system has been designed and developed to help porous, permeable materials with predicted porosity have been produced. The research aims to develop a mechatronic system for technology optimization in manufacturing permeable porous materials with controlled properties. As a result, the method of computer modeling of porous, permeable materials was developed. It allows us to consider the peculiarities of porosity distribution and radial velocity in radial isostatic compression. Additionally, a new mechatronic system for producing permeable materials allows us to determine the porosity distribution and particular characteristics of permeable powder material. The proposed approach allows us to evaluate the impact of technological modes on the main operational characteristics.


Author(s):  
Jan Breitenbach ◽  
Louis Maximilian Reitter ◽  
Muyuan Liu ◽  
Kuan-Ling Huang ◽  
Dieter Bothe ◽  
...  

Spray systems often operate under extreme ambient conditions like high pressure, which can have a significant influence on important spray phenomena. One of these phenomena is binary drop collisions. Such collisions, depending on the relative velocity and the impact parameter (eccentricity of the collision), can lead to drop bouncing, coalescence or breakup. This experimental and computational study is focused on the description of the phenomenon of drop bouncing, which is caused by a thin gas layer preventing the drops coalescence. To identify the main influencing parameters of this phenomenon, experiments on binary drop collisions are performed in a pressure chamber. This experimental system allows us to investigate the effect of an ambient pressure (namely the density and viscosity of the surrounding gas) on the bouncing/coalescence threshold.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4758


2021 ◽  
Vol 3 (1) ◽  
pp. 45-49
Author(s):  
Muhammad Umar Maqbool ◽  
Arslan Dawood Butt ◽  
Abdul Rauf Bhatti ◽  
Yawar Ali Sheikh ◽  
Muhammad Waleed Asif

This work performs a quantitative assessment of the impact of rooftop PV installation on building’s net energy demand using model of roof structure and steady state thermal simulations. For this purpose, roof structure typically used in Faisalabad, Pakistan is modeled with and without the shading effect due to a 395 W commercial rooftop PV setup. The simulated parameters include the impact of PV module’s dimensions, mounting position/angle alongside roof size and ambient conditions on heat load of air-conditioning system to maintain a temperature of 25 °C within building’s top floor. During the daylight hours of July, the heat load added by the roof on average reduces from 150.87 BTU/h/m2 without PV to 118.16 BTU/h/m2 with PV structure. This 20.05% reduction in energy demand has been achieved with July’s maximum daytime solar and infrared irradiances of 792.2 W/m2 and 466 W/m2 recorded at an average ambient temperature of 35.5 °C and wind speed of 2.75 m/s. This study provides valuable data on optimization of roof layer structure during building’s construction in anticipation of PV system installation at a later stage. Also developed techniques/methods to reduce building’s energy budget due to PV installation, can be valuable input for construction industry as well.


2021 ◽  
Vol 4 ◽  
pp. 40-44
Author(s):  
Gumirov A. ◽  

Purpose. The article describes methodology for conducting research on parameters of compression foam cooling during its delivery through hose-pump systems depending on the operating modes of the foam generating installation. The impact of mass consumption of compression foam on its cooling at low temperatures has been examined. The application of a mathematical model of air-foam mixture movement in hose-pump systems at different temperature modes has been substantiated. Methods. Empirical method-experiment has been used for research. Findings. A number of experiments have been carried out to confirm the developed model of compression foam moving in hose-pump systems at different temperature modes. A mobile installation for generating and delivering compression foam has been used as the object of the research. Inaccuracy in calculations obtained with the help of a mathematical model in comparison with the experimental data is 10% which makes a possible to claim that the model of compression foam moving in hose-pump systems at different temperature modes has been chosen properly. Research application field. According to the obtained data, it is possible to plan means and forces of fire units for extinguishing fires using compression foam at low temperatures. Conclusions. The developed mathematical model of compression foam movement during its delivery through hose-pump systems is confirmed by experimental data. The dependence of mass consumption impact on compression foam cooling when it is delivered through fire hoses at low temperatures has been obtained experimentally.


2020 ◽  
Vol 310 ◽  
pp. 00046
Author(s):  
Lenka Kabošová ◽  
Eva Kormaníková ◽  
Stanislav Kmeť ◽  
Dušan Katunský

Building skins are persistently exposed to changes in the weather, including the cases of weather extremes, increasing in frequency due to global climate change. As a consequence of the advancements of digital design tools, the integration of the weather conditions into the design process is much smoother. The impact of the ambient conditions on buildings and their structures can be digitally analyzed as early as in the conceptual design stage. These new design tools stimulate original ideas for shape-changing building skins, actively reacting to the dynamic weather conditions. In the paper, a digital design method is introduced, leading towards the design of a building skin, able of the passive shape adaptation when subjected to the wind. The designed building skin consists of a tensegrity structure where the tensioned elements are substituted by a tensile membrane, creating a self-equilibrated building skin element. In the previous research, a small prototype of this wind-adaptive element was created. The computer simulations are employed to predict the adaptive behavior of a bigger, full-scale building skin element. The before-mentioned building envelope becomes an active player in its surrounding environment, passively reacting to the wind in real-time, thanks to the geometric and material properties. Due to the local shape changes caused by the wind force, the wind can be perceived unconventionally through the adaptive building structure.


Sign in / Sign up

Export Citation Format

Share Document