Pushing the Limits for Open Hole Zonal Isolation – Design and Qualification of Expandable Steel Packer

2021 ◽  
Author(s):  
Mohd Nazri Md Noor ◽  
Nabil Batita ◽  
Mohamed Gaby ◽  
Yoann Riou ◽  
Samuel Roselier ◽  
...  

Abstract Enhancing gas productivity is linked to multistage stimulation (MSS). Choosing a cemented over uncemented solution is driven by factors such as operational efficiency, drilling practices, and isolation techniques. Swellable and mechanical packers have been used widely. A new packer type, an expandable steel packer, has been qualified recently, the expandable steel packer combines the strengths of mechanical and swellable packers and will provide an option for openhole completions. The 4.5-in. expandable steel packer design was optimized to meet most demanding applications with the following characteristics: reduced running outside diameter (OD) to 5.6 in., premium assembly technique by crimping, double sleeve pressure self-compensation, and use of nickel alloys for sour environment. After the design of the packer was completed, the 4.5-in. expandable steel packer was qualified according to the API Spec 19OH (API 2018) standard protocol at 15,000 psi with thermal variation between 320°F and 68°F. The packer was tested in a casing with inside diameter (ID) of 6.5 in. The test casing had an ID of 6.5 in. whereas nominal hole size ranges from 5.875 in. to 6.125 in. It was chosen to simulate a washout and considering the calculated maximum expansion ratio for the steel to verify the 15,000-psi pressure rating capability. The test casing was built with a heat exchanger, high-pressure pump, and pressure and temperature sensors. The packer was expanded inside the dummy well with all the measuring instruments in place. Expansion pressure signatures were observed as predicted. The analysis of the packer setting pressure curves showed expansion initiation and full casing ID contact. The liquid differential pressure test from each side of the packer proved the internal pressure compensation performed as expected. No leak was observed during the pressure steps of 15.000 psi held for 15 minutes while cycling the temperature from 320°F to 68°F and back to 320°F. The expandable steel packer utilizes a unique double-sleeve system for self-pressure compensation during ball-drop stimulation operations. The packer expandable sleeve is protected during deployment by the end fittings. Expandable steel packers exhibit robustness during running in hole, enable setting on demand, have a high expansion ratio, require no de-rating vs. hole size, and have low sensitivity to thermal variations.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1854 ◽  
Author(s):  
Marek Iwański ◽  
Grzegorz Mazurek ◽  
Przemysław Buczyński

This article discusses the results of bitumen foam properties optimisation with respect to three factors: air pressure, bitumen temperature and amount of water. The test materials were unmodified bitumen 50/70 and bitumen 50/70 modified with 2.5% synthetic wax. The experiment was designed according to the 3(3−1) fractional factorial design. The distribution of parameters of bitumen foam were measured with the authors’ original apparatus using a laser beam. This measurement method increased the accuracy of maximum expansion ratio (ER) and half-life (HL) estimation. Based on HL and ER results, it was found that the foaming process increased bitumen stiffness due to the dynamic ageing of the bitumen. The experimental design allows more effective control over the properties of foamed bitumen with respect to its intended use. The presence of synthetic wax extended the half-life of the bitumen foam.


Author(s):  
Wang Fangnian ◽  
Qin Huan ◽  
Chen Yaodong ◽  
Bai Ning ◽  
Xing Mian ◽  
...  

The shape characteristics and direct contact condensation (DCC) heat transfer of submerged supersonic steam jet were investigated. One of the shape identification methods is the DCC shape regime map as a function of nozzle exit pressure, mass flux and pool water temperature, another one is the Look Up Table. Then based on the theoretical analysis, the new basic expressions of supersonic steam jet dimensionless penetration length, maximum expansion ratio, and heat transfer correlations were given, which were in terms of Ma number and Ja number. The correlations were nonlinearly fitted and validated well against the experimental data form open literatures. The discrepancies of penetration length and maximum expansion ratio between predicted and experimental values were within ±25% and ±12% respectively. Supersonic steam jet DCC heat transfer is feasible to be calculated via the identification of steam jet shape and selection of the corresponding shape and heat transfer correlations.


2020 ◽  
Author(s):  
Jan-Lukas Tirpitz ◽  
Udo Frieß ◽  
François Hendrick ◽  
Carlos Alberti ◽  
Marc Allaart ◽  
...  

Abstract. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a well-established ground-based measurement technique for the detection of aerosols and trace gases particularly in the boundary layer and the lower troposphere: ultraviolet- and visible radiation spectra of skylight are analysed to obtain information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of spectra recorded under different viewing geometries ("Multi-Axis") allows retrieval of tropospheric aerosol and trace gas vertical distributions by applying numerical inversion methods. The second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) took place in Cabauw (The Netherlands) in September 2016 with the aim of assessing the consistency of MAX-DOAS measurements of tropospheric species (NO2, HCHO, O3, HONO, CHOCHO and O4). This was achieved through the coordinated operation of 36 spectrometers operated by 24 groups from all over the world, together with a wide range of supporting reference observations (in situ analysers, balloon sondes, lidars, Long-Path DOAS, sun photometer and others). In the presented study, the retrieved CINDI-2 MAX-DOAS trace gas (NO2, HCHO) and aerosol vertical profiles of 15 participating groups using different inversion algorithms are compared and validated against the colocated supporting observations. The profiles were found to be in good qualitative agreement: most participants obtained the same features in the retrieved vertical trace gas and aerosol distributions, however sometimes at different altitudes and of different intensity. Under clear sky conditions, the root-mean-square differences of aerosol optical thicknesses, trace gas (NO2, HCHO) vertical columns and surface concentrations among the results of individual participants vary between 0.01–0.1, (1.5–15) x 1014 molec cm-2 and (0.3–8) x 1010 molec cm-3, respectively. For the comparison against supporting observations, these values increase to 0.02–0.2, (11–55) x 1014 molec cm-2 and (0.8–9) x 1010 molec cm-3. It is likely that a large part of this increase is caused by imperfect spatio-temporal overlap of the different observations. In contrast to what is often assumed, the MAX-DOAS vertically integrated extinction profiles and the sun photometer total aerosol optical thickness were found to not necessarily being comparable quantities, unless information on the real aerosol vertical distribution is available to account for the low sensitivity of MAX-DOAS observations at higher altitudes.


2016 ◽  
Vol 36 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Abhishek Gandhi ◽  
Naresh Bhatnagar

Abstract In this study, the influence of die opening gap on foam attributes during a microcellular extrusion foaming process was investigated. Lower die openings developed higher pressure drops on the foams, as a result of which greater thermodynamic instability was stimulated and, consequently, higher cell density foams along with enhanced expansion ratios were achieved. Further investigations were performed to study the synergistic influence of altering die opening with critical process parameters, namely, screw rotational speed and die temperature, on the foam expansion ratio and morphological transformations. Higher screw rotational speed induced shear nucleation phenomenon, which further enhanced the foaming process significantly. Also, an optimum die temperature was observed, which developed maximum expansion ratio at the lowest die opening gap. This study intends to enhance the understanding of extrusion foam processing among academia as well as among industries.


2019 ◽  
Vol 4 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Rejaul Hoque Bepary ◽  
D. D. Wadikar ◽  
C. R. Vasudish ◽  
A. D. Semwal ◽  
G. K. Sharma

Ricebean(Vigna umbellata), a native bean of North-Eastern part of India has not been explored fully for development of convenience foods although it is loaded with various vitamins, minerals, dietary fiber, phytochemicals and bioactive compounds. The effect of extrusion parameters namely moisture content, barrel temperature and screw speed on expansion ratio, extrudate density, and breaking strength was investigated by using response surface methodology. It was observed that moisture content of flour had significant (p<0.05) affect on expansion ratio, extrudate density, and breaking strength of extrudates. The optimal combination of process parameters which resulted in extrudates with maximum expansion ratio but minimum extrudate density and breaking strength were 15 per cent moisture content, 110°C barrel temperature and 350 rpm screw speed. The value of water absorption index, water solubility index, swelling power, oil absorption index, bulk density, true density and colour for optimally extruded ricebean flour (OEF) was found significantly different (p<0.05) whereas value of proximate parameters were insignificant (P>0.05) than the native flour. The OEF was used for different downstream processings such as papadability, friability, steamability, cakeability, gravyability and porridgability and compared with that of native flour for their process quality parameters. The cake prepared with OEF had significantly (p<0.05) less baking time (25 min) than the cake of native ricebean flour (35 min). However, consistency and over all acceptability (OAA) of porridge from OEF was found significantly (p<0.05) higher than porridge of native ricebean flour. Hierarchical cluster analysis on OAA showed that porridgability and cakeability were most influential downstream processes


2020 ◽  
Vol 20 (1) ◽  
pp. 299-306
Author(s):  
Chan Wook Lee ◽  
Yong Jun Lee ◽  
Ji Seung Park ◽  
Do Guen Yoo

The importance of water quality management in pipes has been recently highlighted through the "Red-water phenomenon" in the city of Incheon. This study proposed a methodology for determining the location of measuring instruments during abnormal water quality issues. The proposed method focuses on analyzing the sensitivity of the flow path through a pipe. Additionally, this flow sensitivity through the tube is analyzed by considering both normal and abnormal conditions. The sensitivity of a pipe is the rate at which the water-flow direction changes. Further, a tube with low sensitivity under normal conditions but high sensitivity under abnormal conditions is the pipe for which the instrument should be first installed. The results were analyzed by applying the proposed methodology to a conventional virtual network. It is expected that, in future, the proposed method for determining the location of water quality gauges could be a useful tool for determining the location of instruments during emergencies.


Author(s):  
Chetan P. Nikhare

Abstract Tube forming is one of the most common manufacturing processes to shape the tubes. Within tube forming operations the general practice is to expand and reduce the tube end cross-section and bend the tube by means of a solid mandrel. Mostly the mandrel is rigid bodies. To reduce the friction between the tube and the tool, tube hydroforming process was evolved in which the fluid was highly pressurized to expand the tube shape to the desired shape. By reducing the friction more uniform thickness could be achieved and thus increase in formability. In this paper, the tube was formed in two steps with low fluid pressure and axial force. The tube will be allowed to a useful maximum buckle by applying the axial force and/or a ramp internal pressure which then hydroforged with constant pressure for the maximum expansion ratio. The buckling mechanics of tube with respect to the fluid pressure and the axial force was studied. Further, the pressure requirement for hydroforging was investigated with respect to the length of the tube. The strain pattern and thickness distribution were studied in the buckling/bulging and hydroforging step.


Author(s):  
A. A. Sheinikov ◽  
Yu. V. Suchodolov ◽  
V. V. Zelenko

The solution of problems of diagnostics of windings of electric machines is associated with the necessity of selection of quasi-periodic test signals against the background noise. In order to highlight useful signals, as a rule, the differences in spectral compositions of signals and noises are used. Ideally, the shape of the optimal filter frequency response should coincide with the shape of the spectrum of the useful signal, which determines the complexity of such a filter. The aim of the research is to increase the accuracy of measurements and simplify the algorithmic support of measuring systems by developing a mathematical tool that makes it possible to uniquely identify and take into account errors caused by the finiteness of the measurement intervals in the processing. Determining a one-to-one relationship between local variations of signal time parameters and alterations in its spectrum parameters is believed to be the reserve of increase of sensitivity of methods of processing of quasi-periodic signals in the conditions of constant growth of computing capabilities of measuring instruments. Variations in the values of the parameters of the signals lead to a violation of the original distribution of the harmonic components, some of the latter being subjected to the greatest alterations changes, and the some other – to the smallest ones. It is proposed to increase the accuracy of measurements due to the replacement the low-sensitivity registration of alterations in the time parameters of signals with the registration of alterations in the parameters of the characteristic harmonic components of the spectrum, which have a maximum sensitivity to deviations of the controlled parameter and a minimum sensitivity to deviations caused by the instability of the measuring equipment. The mathematical tool corresponding to the practice has been developed, that makes it possible to determine unambiguously the errors caused by finiteness of measurement intervals of quasi-periodic signals. Automatic accounting of these errors makes it possible to do without complex correlation processing of quasi-periodic signals that require large computing resources (time and speed of data processing, the amount of RAM) and to ensure the accuracy of measurements.


Sign in / Sign up

Export Citation Format

Share Document