New Perspectives for Acidizing Tight Carbonate Oil Producers Completed Across an Extended Openhole Horizontal Section

2021 ◽  
Author(s):  
Maad Hasan Qayad Subaihi ◽  
Muhammad Syafruddin ◽  
Avnish Kumar Mathur ◽  
Jaber Abdulmajeed Abdulla ◽  
Nestor Molero ◽  
...  

Abstract Over the past decade, coiled tubing (CT) has been one of the preferred fluid conveyance techniques in tight carbonate oil producers completed with an uncased horizontal section. In the onshore Middle East, conventional CT stimulation practices have delivered inconsistent results in that work environment. This is mainly due to a mix of reservoir heterogeneity, limited CT reach, lower CT pumping rates, uncontrolled fluid placement, and uncertainty of downhole dynamics during the stimulation operations. An intervention workflow recently validated in onshore Middle East to acidize tight carbonate openhole horizontal water injectors was introduced for the first time in an oil producer. The advanced stimulation methodology relies on CT equipped with fiber optics to visualize original fluid coverage across the openhole interval through distributed temperature sensing (DTS). Real-time downhole telemetry is used to control actuation of CT toolstring components and to understand changing downhole conditions. Based on the prestimulation DTS survey, the open hole is segmented into sections requiring different levels of stimulation, fluid placement techniques, and diversion requirements. The candidate carbonate oil producer featured an average permeability of 1.5 md along 8,003 ft of 6-in. uncased horizontal section. Because of the horizontal drain's extended length and the presence of a minimum restriction of 2.365-in in the 3 1/2-in. production tubing, a newly developed CT slim tractor was essential to overcome reach limitations. In addition, a customized drop-ball high-pressure jetting nozzle was coupled to the extended reach assembly to enable high-energy, pinpoint acidizing in the same run. The instrumented CT was initially run until lockup depth, covering only 53% of the horizontal section. The CT slim tractor was then precisely controlled by leveraging real-time downhole force readings, enabling full reach across the open hole. Prestimulation DTS allowed identification of high- and low-intake zones, which enabled informed adjustments of the acidizing schedule, and in particular the level of jetting required in each section. After its actuation via drop-ball, the high-pressure jetting nozzle was operated using downhole pressure readings to ensure optimum jetting conditions and avoid exceeding the fracturing threshold. Upon completion of the stimulation stage, post-stimulation DTS provided an evaluation of the fluid placement effectiveness. After several weeks of production, the oil rate still exceeded the operator's expectations fivefold. This intervention validates the applicability of the advanced matrix stimulation workflow in tight carbonate oil producers completed across a long openhole horizontal interval. It also confirms the value of real-time downhole telemetry for optimal operation of extended reach toolstrings and the understanding of the downhole dynamics throughout stimulation treatments, the combination of which ultimately delivers breakthrough production improvements compared to conventional stimulation approaches, in a sustainable manner.

2021 ◽  
Author(s):  
Ahmed Mohamed Fawzy ◽  
Noor Nazri Talib ◽  
Ruslan Makhiyanov ◽  
Arslan Naseem ◽  
Nestor Molero ◽  
...  

Abstract In high-temperature carbonate producers, conventional hydrochloric (HCl) acid systems have been ineffective at delivering sustainable production improvement due to their kinetics. Retarded acids are deemed necessary to control the reaction and create effective wormholes. This scenario is even more critical in wells completed across long openhole horizontal intervals due to reservoir heterogeneity, changing downhole dynamics, and uniform acid placement goals. Out of the different retarded acid options, emulsified acid is one of the preferred choices by Middle East operators because of its excellent corrosion inhibition and deep wormhole penetration properties. However, it also brings other operational complexities, such as higher friction pressures, reduced pump rates, and more elaborate mixing procedures, which in some cases restrict its applicability. The recent introduction of a single-phase retarded inorganic acid system (SPRIAS) has enabled stimulation with the same benefits as emulsified acids while eliminating its drawbacks, allowing friction pressures like that of straight HCl and wormholing performance equivalent to that of emulsified acid. A newly drilled oil producer in one of the largest carbonate fields in onshore Middle East was selected by the operator for pilot implementation of the SPRIAS as an alternative to emulsified acid. The candidate well featured significant damage associated with drilling, severely affecting its productivity. The well was completed across 3,067 ft of 6-in. openhole horizontal section, with a bottomhole temperature of 285°F, permeability range of 0.5 to 1.0 md, and an average porosity of 15%. Coiled tubing (CT) equipped with fiber optics was selected as the fluid conveyance method due to its capacity to enable visualization of the original fluid coverage through distributed temperature sensing (DTS), thus allowing informed adjustment of the stimulation schedule as well as identification of chemical diversion and complementary fluid placement requirements. Likewise, lower CT friction pressures from SPRIAS enabled the utilization of high-pressure jetting nozzle for enhanced acid placement, which was nearly impossible with emulsified acid. Following the acidizing treatment, post-stimulation DTS showed a more uniform intake profile across the uncased section; during well testing operations, the oil production doubled, exceeding the initial expectations. The SPRIAS allowed a 40% reduction in CT friction pressures compared to emulsified acid, 20% optimization in stimulation fluids volume, and reduced mixing time by 18 hours. The experience gained with this pilot well confirmed the SPRIAS as a reliable option to replace emulsified acids in the region. In addition to production enhancement, this novel fluid simplified logistics by eliminating diesel transportation, thus reducing equipment and environmental footprints. It also reduces friction, thus enabling high-pressure jetting via CT, leading to more efficient stimulation with lower volumes.


2021 ◽  
Author(s):  
Salem Al-Sabea ◽  
Milan Patra ◽  
Abdullah Abu-Eida ◽  
Nasser Al-Azmi ◽  
Mohammad AlEidi ◽  
...  

Abstract The Mishrif formation in west Kuwait is a tight carbonate reservoir having low oil mobility. It is fractured and heterogeneous with wide variation in porosity ranging from 10 to 25%, matrix permeability of about 0.1 to 10 md, and 20°API oil. Production tests and geomechanical study results have revealed that productivity is mostly from the high-permeability matrix and critically stressed fracture networks. Recently, the Mishrif development has been dominated by horizontal wells to maximize reservoir contact and enhance productivity. However, a challenge in such openhole completion is the stimulation strategy requiring effective diversion technology due to the uneven acid distribution along the lateral section. To address those challenges, a novel engineered workflow has been implemented relying on distributed temperature sensing (DTS) to assess the fluid coverage across the openhole section. Results enable identifying high- and low-intake zones, segmenting the uncased section into intervals requiring different levels of stimulation, and making informed decisions regarding diversion requirements. The intervention was conducted in two stages. Coiled tubing (CT) was the selected fluid conveyance method on the first stage given its capacity for more controlled fluid placement, and high-rate bullheading stimulation was selected for the second stage. During the treatment, multiple challenges were faced, mainly driven by a high-permeability streak identified by the DTS near the heel of the lateral. The CT stimulation procedures were modified on the spot, and measures were taken to minimize the impact on the thief zone, which included a combination of diversion techniques, such as high-pressure jetting, dual injection, and pumping of a near-wellbore nonreactive diverter, which is composed of a customized blend of multimodal particles and degradable fibers to minimize fluid leakoff into the high-intake zone. Likewise, real-time downhole telemetry was crucial throughout the CT stimulation because it allowed the highest injection rate possible below the preset pressure limits, continuous monitoring of downhole dynamics along the intervention, and optimal actuation of the high-pressure jetting tool. Upon completion of the CT stimulation, a second DTS log was carried out to evaluate the fluid coverage and effectiveness of the diversion strategy, enabling further adjustment of the bullhead stimulation program. This stimulation workflow implemented in west Kuwait represents a cost-effective alternative to stimulate openhole tight carbonates. This study brings new perspectives for treating complex reservoirs in the region, and shares lessons learned for future interventions.


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
Zhiyao Zhong ◽  
Danji Huang ◽  
Kewei Hu ◽  
Xiaomeng Ai ◽  
Jiakun Fang

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 522
Author(s):  
Qiu-Yun Huang ◽  
Ai-Peng Jiang ◽  
Han-Yu Zhang ◽  
Jian Wang ◽  
Yu-Dong Xia ◽  
...  

As the leading thermal desalination method, multistage flash (MSF) desalination plays an important role in obtaining freshwater. Its dynamic modeling and dynamic performance prediction are quite important for the optimal control, real-time optimal operation, maintenance, and fault diagnosis of MSF plants. In this study, a detailed mathematical model of the MSF system, based on the first principle and its treatment strategy, was established to obtain transient performance change quickly. Firstly, the whole MSF system was divided into four parts, which are brine heat exchanger, flashing stage room, mixed and split modulate, and physical parameter modulate. Secondly, based on mass, energy, and momentum conservation laws, the dynamic correlation equations were formulated and then put together for a simultaneous solution. Next, with the established model, the performance of a brine-recirculation (BR)-MSF plant with 16-stage flash chambers was simulated and compared for validation. Finally, with the validated model and the simultaneous solution method, dynamic simulation and analysis were carried out to respond to the dynamic change of feed seawater temperature, feed seawater concentration, recycle stream mass flow rate, and steam temperature. The dynamic response curves of TBT (top brine temperature), BBT (bottom brine temperature), the temperature of flashing brine at previous stages, and distillate mass flow rate at previous stages were obtained, which specifically reflect the dynamic characteristics of the system. The presented dynamic model and its treatment can provide better analysis for the real-time optimal operation and control of the MSF system to achieve lower operational cost and more stable freshwater quality.


2008 ◽  
Author(s):  
ShunChang Wang ◽  
Xinquan Zheng ◽  
Chun Jiang Zheng ◽  
Bailin Wu ◽  
YiMing Jiang ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 322-329
Author(s):  
Kevin J. Meagher

AbstractThe IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. Cherenkov radiation emitted by charged secondary particles from neutrino interactions is observed by IceCube using an array of 5160 photomultiplier tubes embedded between a depth of 1.5 km to 2.5 km in the Antarctic glacial ice. The detection of astrophysical neutrinos is a primary goal of IceCube and has now been realized with the discovery of a diffuse, high-energy flux consisting of neutrino events from tens of TeV up to several PeV. Many analyses have been performed to identify the source of these neutrinos: correlations with active galactic nuclei, gamma-ray bursts, and the galactic plane. IceCube also conducts multi-messenger campaigns to alert other observatories of possible neutrino transients in real-time. However, the source of these neutrinos remains elusive as no corresponding electromagnetic counterparts have been identified. This proceeding will give an overview of the detection principles of IceCube, the properties of the observed astrophysical neutrinos, the search for corresponding sources (including real-time searches), and plans for a next-generation neutrino detector, IceCube–Gen2.


1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo

Sign in / Sign up

Export Citation Format

Share Document