New Approaches for Drilling Highly Depleted Reservoir in Deep Water Wells

2021 ◽  
Author(s):  
Ola Mohamed Balbaa ◽  
Hesham Mohamed ◽  
Sherif Mohamed Elkholy ◽  
Mohamed ElRashidy ◽  
Robert Munger ◽  
...  

Abstract While drilling highly depleted gas reservoirs with a very narrow drilling window, Common drilling methods like utilizing loss of circulation pills, wellbore strengthening materials and managed pressure drilling (MPD) are being used in several reservoirs, yet it cannot be successful or cost effective if applied in a traditional manner. Innovative approaches to enable drilling wells in highly depleted reservoir in the Mediterranean deep water were adopted. The approaches incorporated design changes to the well and Bottom hole assembly (BHA), optimized drilling practices, and unconventional use of MPD while drilling and cementing production liner. Well design change in comparison to offset wells to allow drilling the reservoir in one hole section. Several design changes were considered in the BHA and drilling fluids to prevent as well as mitigate losses and differential sticking risks. From the BHA viewpoint, one of the key successful prevention measures was maximizing the standoff to reduce the contact area with the formation, this was achieved through utilizing spiral heavy wall drill pipe (HWDP) instead of drill collars in addition to a modeled placement of stabilizers and roller reamers. While on the drilling fluid side, Calcium carbonate material was added to strengthen wellbore, prevent losses and avoid formation damage. Particle size up to 1000 micron and concentration up to 40ppb was used to strengthen the depleted sands dynamically while drilling. Furthermore, as mitigation to stuck pipe, Jar and accelerator placement was simulated to achieve optimum impulse and impact force while maintaining the Jar above potential sticking zone. Whereas to address the consequence of a stuck pipe event, disconnect subs were placed in BHA to allow for recovering the drill string efficiently. MPD was first introduced in the Mediterranean in 2007 and continued to develop this well-known technique to mitigate various drilling challenges. For this well, MPD was one of the key enabling factors to safely drill, run and cement the production liner. Surface back pressure MPD allowed using the lowest possible mud weight in the hole and maintaining downhole pressure constant in order to manage the narrow drilling window between the formation pressure and fracture pressure (less than 0.4 ppg). MPD was also applied for the first time for running and cementing the production liner to prevent losses and achieve good cement quality which is a key to successful well production.

2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2021 ◽  
Author(s):  
Nichnita Tortrakul ◽  
Chatwit Pochan ◽  
Nardthida Kananithikorn ◽  
Thanapong Siripan ◽  
Basil Ching ◽  
...  

Abstract This paper presents a method of reducing equivalent circulating density (ECD) while drilling using eccentric string reamers (ESR) with adjustable gage stabilizer (AGS) in Gulf of Thailand (GoT). Reduced ECD in slimhole is desirable when drilling depleted reservoirs as reduced borehole pressure can reduce or delay drilling fluid loss events. Delaying losses can allow well depth to be increased with the prospect of penetrating otherwise unrealized pay horizons and increasing reserves capture. Several methods of reducing ECD were considered but most solutions included changing drill string and/or casing design specifications with prohibitive cost. A low-cost, low operational-impact solution was needed. Hole-opening is a method of increasing annular clearance, but well delivery requirements of ~4.5 days per well necessitates a one-trip solution without introducing significant ROP reduction or negatively impact bottomhole assembly (BHA) walking tendencies. Further, the preferred solution must be compatible with a high temperature reservoir drilling environment and must not undermine drilling system operational reliability. A simple but controversial tool for hole opening is ESR. ESR’s are simple in that there are no moving parts or cutter blocks to shift, and operating cost is low. They are controversial due to uncertainty that the tool eccentricity and drilling dynamics will successfully open hole to the desired diameter. Given that the intent of this hole-opening application is limited to creating annular clearance for fluid, not mechanical clearance, the eccentric reamer solution was chosen for field trial and potential development. A tool design challenge was to create a reamer geometry with the desired enlargement ratio (6⅛-in. to 6⅞-in.) while drilling, and reliably drift surface equipment and casing without complications. The ESR design must efficiently drill-out cement and float equipment as well as heterogeneous shale/sand/mudstone interbedded formation layers without significant vibration. If successful, the enlarged hole diameter will increase annular clearance, reduce ECD, improve hole cleaning, and allow drilling depth to be increased to capture additional reserves The plug and play functionality of the ESR required no changes to the existing rig site procedures in handling and making up the tool. The ESR drifts the casing and drills cement and shoe track with normal parameters. The ESR is run with standard measurements-while-drilling (MWD)/logging-while-drilling (LWD) AGS BHA and is able to reduce ECD providing the opportunity to drill deeper and increase barrel of oil equivalent (BOE) per each wellbore. Performance analysis has shown no negative effect on drilling performance and BHA walking tendency. The novelty of this ESR application is its proven ability to assist in increasing reserves capture in highly depleted reservoirs. The ESR is performing very efficiently (high ROP) and reliability is outstanding. In this application, the ESR is a very cost-effective and viable solution for slimhole design.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Knud Richard Gyland ◽  
Bjørnar Lund ◽  
Sneha Sayindla ◽  
...  

A laboratory scale flow loop for drilling applications has been used for evaluating the effect of lubricants on skin friction during drilling and completion with oil based or low solids oil based fluids. The flow loop included a 10 meter long test section with 2″ OD free whirling rotating drill string inside a 4″ ID wellbore made of concrete elements positioned inside a steel tubing. A transparent part of the housing was located in the middle of the test section, separating two steel sections of equal length. The entire test section was mounted on a steel frame which can be tilted from horizontal to 30° inclination. The drilling fluids and additives in these experiments were similar to those used in specific fields in NCS. Friction coefficient was calculated from the measured torque for different flow velocities and rotational velocities and the force perpendicular to the surface caused by the buoyed weight of the string. The main objective of the article has been to quantify the effect on mechanical friction when applying different concentrations of an oil-based lubricant into an ordinary oil based drilling fluid and a low solids oil based drilling fluid used in a North Sea drilling and completion operation.


2020 ◽  
Vol 10 (8) ◽  
pp. 3449-3466
Author(s):  
Atul Kumar Patidar ◽  
Anjali Sharma ◽  
Dev Joshi

Abstract The hydrocarbon extraction and exploitation using state-of-the-art modern drilling technologies urge the use of biodegradable, environment-friendly drilling fluid and drilling fluid additives to protect the environment and humanity. As more environmental laws are enacted and new safety rules implemented to oust the usage of toxic chemicals as fluid additives, it becomes inevitable that we re-evaluate our choice of drilling fluid additives. Drilling fluids and its additives play a crucial role in drilling operations as well as project costing; hence, it is needed that we develop cost-effective environment-friendly drilling fluid additives that meet the requirements for smooth functioning in geologically complex scenarios as well as have a minimal ecological impact. The current research work demonstrates key outcomes of investigations carried out on the formulation of a sustainable drilling fluid system, where groundnut husk is used as a fluid loss additive and a rheological modifier having no toxicity and high biodegradability. Cellulose was generated from groundnut husk at two varying particle sizes using mesh analysis, which was then compared with the commercially available PAC at different concentrations to validate its properties as a comparable fluid loss retarder additive as well as a rheological modifier. In the present work, various controlling characteristics of proposed groundnut husk additive are discussed, where comparison at different concentrations with a commercially available additive, PAC, is also validated. The API filtration losses demonstrated by the (63–74) µm and the (250–297) µm proposed additive showed a decrease of 91.88% and 82.31%, respectively, from the base mud at 4% concentration. The proposed husk additives acted as a filtrate retarder additive without much deviation from base rheology and with considerably higher pH than the base mud. This investigation indicates that the proposed fluid loss additive and rheological modifier can minimize the environmental hazards and have proved to be a cost-effective eco-friendly alternative in this challenging phase of the hydrocarbon exploration industry.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


Author(s):  
Nicholas J. Thorp ◽  
Geir Hareland ◽  
Brian R. Elbing ◽  
Runar Nygaard

The drill bit blaster (DBB) studied in this paper aims to maximize the drilling rate of penetration (ROP) by using a flow interrupting mechanism to create drilling fluid pulsation. The fluctuating fluid pressure gradient generated during operation of the DBB could lead to more efficient bit cutting efficiency due to substrate depressurization and increased cutting removal efficiency and the vibrations created could reduce the drill string friction allowing a greater weight on bit (WOB) to be achieved. In order to maximize these mechanisms the effect of several different DBB design changes and operating conditions was studied in above ground testing. An analytical model was created to predict the influence of various aspects of the drill bit blaster design, operating conditions and fluid properties on the bit pressure characteristics and compared against experimental results. The results indicate that internal tool design has a significant effect on the pulsation frequency and amplitude, which can be accurately modeled as a function of flowrate and internal geometry. Using this model an optimization study was conducted to determine the sensitivity of the fluid pulsation power on various design and operating conditions. Application of this technology in future designs could allow the bit pressure oscillation frequency and amplitude to be optimized with regard to the lithology of the formations being drilled which could lead to faster, more efficient drilling potentially cutting drilling costs and leading to a larger number of oil and natural gas plays being profitable.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2339-2350 ◽  
Author(s):  
Pixiang Lan ◽  
Kyriaki Polychronopoulou ◽  
Larry L. Iaccino ◽  
Xiaoying Bao ◽  
Andreas A. Polycarpou

Summary Extended-reach-drilling (ERD) wells are expensive and challenging; however, in special situations, compared with conventional drilling, ERD wells are more environmentally friendly and cost-effective. Application of drilling fluids with good lubrication for ERD is one of the most important methods to facilitate longer total depth (TD) of the wells. To better simulate the elevated-temperature environment in the borehole, this study proposes a method to perform tribological studies of drilling fluids at temperatures higher than 100°C by conducting experiments in a high-chamber-pressure environment, which can suppress the evaporation of the drilling fluid at high temperatures. Two lubricant additives were studied, and the results showed that, for the drilling fluid at elevated temperatures, a prototype additive (Additive A) reduced the coefficient of friction (COF) significantly by 44.8%, whereas a commercial additive (Additive B) caused only a slight reduction of the COF by 4%. After the tribological experiments, the wear mechanisms of the additives and abrasive particles were investigated with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).


Author(s):  
Abhijeet D. Chodankar ◽  
Cheng-Xian Lin

Abstract High temperature drilling environment has a drastic effect on drilling fluids, wellbore stability, and drilling system components. It has been observed that drilling fluids displace conventional halide based fluids in High Pressure and High Temperature (HPHT) wells leading to corrosion and environmental hazards, while wellbore strengthens further as a result of an increase in fracture initiation pressure in high temperature environment. However, it seriously damages the downhole tools like sensors, elastomer dynamic seals, lithium batteries, electronic component and boards leading to increases in cost and non-productive time. The main objective of this paper is to present an analytical borehole temperature model based on classical heat transfer laws in a high temperature drilling environment. The borehole is modelled using two approaches: composite wall and concentric cylinders. The composite wall and concentric cylinder approaches consist layers of geological formations, drilling fluids outside the drill string, drill string, and drilling fluid inside the drill string. Temperature, heat transfer coefficient, and heat transfer variations along the borehole layers are determined using the derived analytical solutions and tested for different drilling fluid types, air drilling environment, and different drill string materials. The results of composite wall and concentric cylinder models are obtained by using the input field temperatures data in the geological formation and inner annulus of drill pipe to determine the borehole temperature profile in HPHT wells. Therefore, a thorough borehole heat transfer analysis will help in wellbore stability, drilling fluid selection, corrosion control, and optimal placement and material selection of drilling components in HPHT drilling environments.


2015 ◽  
Vol 4 (1) ◽  
pp. 99-109 ◽  
Author(s):  
A. Kopf ◽  
T. Freudenthal ◽  
V. Ratmeyer ◽  
M. Bergenthal ◽  
M. Lange ◽  
...  

Abstract. Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerät) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data on command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to 2 weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on RV Sonne, Germany, in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked, and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by a ROV is planned for 2016.


Sign in / Sign up

Export Citation Format

Share Document