Evaluation and Optimization of a Newly Developed Chemical for Sand Consolidation: HTHP Gas Wells

2021 ◽  
Author(s):  
Ali Al-Taq ◽  
Mohammad Alqam ◽  
Abdullah Alrustum

Abstract Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction. A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.

2015 ◽  
Vol 55 (2) ◽  
pp. 445
Author(s):  
Seng Lim ◽  
Bailin Wu ◽  
Xavier Choi ◽  
Chong Yau Wong ◽  
Bahrom Madon ◽  
...  

Sand production may be induced by many factors, such as reservoir pressure depletion, excessive draw-down pressure and water-cut. When transported from the formation, the sand particles can cause serious damage to completion and topside assets, impacting the overall productivity and safety of the operating wells. The sand management strategy for a particular field requires careful planning, evaluation and implementation to ensure effective and safe well productivity. The associated CAPEX and OPEX implications and risks can be high if the sanding problem is not managed carefully. This requires a good understanding of field-specific sanding problems. PETRONAS and CSIRO have collaborated on an integrated research program to provide a better understanding of the critical issue affecting sand production and develop associated predictive tools. This involved a multidisciplinary team from geomechanics, fluid mechanics and mathematics to examine the entire sand production process from sand generation, control and transportation to ensure an optimum sand management strategy. This extended abstract provides an overview of the research methodology based on experimental and numerical modelling techniques supported by field information. The study focuses on sand production behaviour, as well as failure of down-hole sand control equipment. The research led to better prediction and quantification of the sand production propensity, as well as erosion severity on critical production equipment. Insights and operational guidelines were also established to assist production and facility engineers in managing sand production challenges. This integrated research methodology would be applicable to unconventional resource areas, such as coal seam gas or shale gas production.


2021 ◽  
Author(s):  
Alain Zaitoun ◽  
Arnaud Templier ◽  
Jerome Bouillot ◽  
Nazanin Salehi ◽  
Budi Rivai Wijaya ◽  
...  

Abstract Many fields in South East Asia are suffering from sand production problems due to sensitive sandstone formation. Sand production increases with time and increasing water production. The production of sand induces loss of production, due to sand accumulation in the wellbore, and heavy operational costs such as frequent sand cleaning jobs, pump replacements, replacement of surface and downhole equipment, etc. An original sand control technology consisting of polymers injection and already deployed in gas wells, has been successfully tested in an offshore oil well. The technology utilizes polymers having a natural tendency to coat the surface of the pores by a thin gel-like film of around 1 µm. Contrary to the use of resins which aim at creating a solid around the wellbore, the polymer system maintains the center of the pores fully open for fluid flow, thus preserving oil or gas permeability while often reducing water permeability (a property known as RPM for Relative Permeability Modification). The advantage of such system is that the product can be injected in the bullhead mode and often, a reduction of water production is observed along the drop in sand production. In gas wells, the treatment lasts around 4 years and can be renewed periodically. A lab work was undertaken to screen out a polymer product well suited to actual reservoir conditions. We conducted bulk tests to evaluate product interaction on reservoir sand samples, and corefloods to evaluate in-situ performances. Treatment volume and concentration were determined after lab test. One of "Oil Well" candidate is located in Arjuna Field, offshore Indonesia. Downhole conditions are: Temperature = 178°F, salinity = 18000 ppmTDS, permeability = 140-300mD, two perforated intervals with total thickness of 67ft (ft-MD) with 38 ft Average Netpay Thickness, production rate = 800 bfpd. The well is under gas lift and needed to be cleaned out every 3 months because of sand accumulation. Polymer treatment was performed in two stages (bottom, then upper interval). A total volume of 150 m3 of polymer solution was pumped. Immediately after treatment, sand cut dropped from 1% to almost 0%. This enabled increasing the drawdown from 32/64’’ choke to 40/64’’, keeping the production sand free and sustained with time. This field test confirms the feasibility of the original sand control polymer technology both in gas wells and in oil wells, which opens high possibilities in the future.


10.14311/516 ◽  
2004 ◽  
Vol 44 (1) ◽  
Author(s):  
T. Zadražil ◽  
F. Vodák ◽  
O. Kapičková

The compressive strengths of unsealed samples of concrete at the age of 180 days and have been measured at temperatures 20 °C, 300 °C, 600 °C and 900 °C. All of tests were performed for cold material. We compared our results with those obtained in [10] for the same type of concrete (age 28, resp. 90 days and measured at temperature ranging from 20 °C to 280 °C). Dependencies of compressive strength and porosity were correlated together and compared for the samples of age 28, 90 and 180 days. Behaviour of concrete of the age 90, resp. 180 days confirms generally accepted hypothesis that with increasing porosity strength of the concrete decreases. It has to be stressed out, howerer, that concrete samples of the age 28 days exhibit totally opposite dependency. 


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250466
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Mohammed Abdalla Ayoub ◽  
Ali Samer Muhsan ◽  
Ibnelwaleed A. Hussein

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model’s reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


2021 ◽  
pp. 1-22 ◽  
Author(s):  
Ali Madadizadeh ◽  
Alireza Sadeghein ◽  
Siavash Riahi

Abstract Today, enhance oil recovery (EOR) methods are attracting more attention to increase the petroleum production rate. Some EOR methods such as low salinity water flooding (LSW) can increase the amount of fine migration and sand production in sandstone reservoirs which causes a reduction in permeability and inflict damages on to the reservoir and the production equipment. One of the methods to control fine migration is using nanotechnology. Nanoparticles (NPs) can reduce fine migration by various mechanisms such as reducing the zeta potential of fine particles' surfaces. In this paper, three NPs including SiO2, MgO, and Al2O3 's effects on controlling fine migration and sand production were investigated in two scenarios of pre-flush and co-injection by using sandpack as a porous media sample. When NPs are injected into the porous media sample, the outflow turbidity and zeta potential of particles decreases. Experiments showed that SiO2 has the best effect on controlling fine migration in comparison with other NPs and it could reduce fine migration 69% in pre-flush and 75% in co-injection. Also, MgO and Al2O3 decreased fine migration 65% and 33% in the pre-flush scenario and 49%,13% in the co-injection scenario, respectively.


2021 ◽  
Author(s):  
Emily Ako ◽  
Erasmus Nnanna ◽  
Odumodu Somtochukwu ◽  
Akinmade Moradeke

Abstract Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1069 ◽  
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Ali Samer Muhsan ◽  
Nurul Hasan ◽  
Tarek Ganat

The chemical sand consolidation methods involve pumping of chemical materials, like furan resin and silicate non-polymer materials into unconsolidated sandstone formations, in order to minimize sand production with the fluids produced from the hydrocarbon reservoirs. The injected chemical material, predominantly polymer, bonds sand grains together, lead to higher compressive strength of the rock. Hence, less amounts of sand particles are entrained in the produced fluids. However, the effect of this bonding may impose a negative impact on the formation productivity due to the reduction in rock permeability. Therefore, it is always essential to select a chemical material that can provide the highest possible compressive strength with minimum permeability reduction. This review article discusses the chemical materials used for sand consolidation and presents an in-depth evaluation between these materials to serve as a screening tool that can assist in the selection of chemical sand consolidation material, which in turn, helps optimize the sand control performance. The review paper also highlights the progressive improvement in chemical sand consolidation methods, from using different types of polymers to nanoparticles utilization, as well as track the impact of the improvement in sand consolidation efficiency and production performance. Based on this review, the nanoparticle-related martials are highly recommended to be applied as sand consolidation agents, due to their ability to generate acceptable rock strength with insignificant reduction in rock permeability.


Sign in / Sign up

Export Citation Format

Share Document