The Use of an r-z Model To Study the Effect of Completion Technique on Gas Well Deliverability

1973 ◽  
Vol 13 (05) ◽  
pp. 259-266
Author(s):  
Henry B. Crichlow ◽  
Paul J. Root

Abstract A digital computer model of a radial gas reservoir was constructed to investigate the effect of completion techniques on gas well deliverability. The model was a standard r-z model divided linearly in the z-direction and logarithmically in the r-direction. Individual reservoir properties were assigned to each element of the model grid. These include porosity, radial and vertical permeability, and water saturation. A finite-difference approach was used to set up the flow equations, and both alternating direction implicit procedure (ADIP) and line successive overrelaxation (LSOR) were used to set up the system of simultaneous equations. The Thomas algorithm was used to solve the tridiagonal systems. From this research the following conclusions were drawn:(1)The real gas potential is effective in linearizing the gas flow equation. For nonturbulent flow the coefficient of performance in the backpressure equation, Q = C [ (Pe) - (Pw)]n can be evaluated independently oil the fluid properties of the gas.(2)Partially producing properties of the gas.(2)Partially producing intervals constitute a skin, the magnitude of which depends on the location of the perforations and the anisotropic nature of the medium.(3)In a damaged or stimulated well, within limits, the significant factor in deliverability reduction is the kind rather than the extent of the damage.(4)From the numerical standpoint ADIP is a more efficient method in "well-behaved" problemsthat is, in homogeneous systemswhereas LSOR is better suited to partially open and nonhomogeneous systems. Introduction Calculation of the flow rate and prediction of the deliverability of gas wells are factors of great economic importance to the natural gas industry. Consequently, the accurate analysis of gas flow in producing gas wells has been a subject of considerable interest, and many papers dealing with it may be found in the literature. One of the earliest methods for calculating gas flow, that of Jenkins and Aronofsky, involved the succession of steady states. Janicek and Katz, using a similar assumption that the rate of pressure change with time is independent of the radius at any given time, derived a set of relatively straightforward predictive equations. Other calculational methods are based on solutions to the partial differential equation describing gas flow in a porous medium. Until recently the analysis was based on linearizations that required evaluation of the gas properties at some average pressure. As a result, these solutions can be applied only when the flow gradients are small. Today gas reservoirs are being discovered at much greater depths and at relatively higher pressures. In many cases the formation permeability pressures. In many cases the formation permeability to gas is quite low. Thus, solutions to be linearized equation can lead to serious errors in predicting deliverability (and, hence, reserves) predicting deliverability (and, hence, reserves) because of the large drawdowns occurring in these systems. The simplifying assumptions implied by the linearized equations are not necessary when the real gas potential proposed by Al-Hussainy et al. is used. This function greatly facilitates the incorporation of the pressure-dependent variables, viscosity, and gas deviation factor into a mathematical model of gas flow. Its use reduces the unsteady-state flow equation directly to a form analogous to that of the diffusivity equation without the tacit assumptions that the pressure gradients within the flow system are small. Furthermore, the coefficients of the spatial derivatives no longer contain the pressure-dependent fluid properties. Because of these advantages the (p) function was used in this investigation of gas well deliverability. SPEJ P. 259

2021 ◽  
Author(s):  
Mauricio Espinosa ◽  
Jairo Leal ◽  
Ron Zbitowsky ◽  
Eduardo Pacheco

Abstract This paper highlights the first successful application of a field deployment of a high-temperature (HT) downhole shut-in tool (DHSIT) in multistage fracturing completions (MSF) producing retrograde gas condensate and from sour carbonate reservoirs. Many gas operators and service providers have made various attempts in the past to evaluate the long-term benefit of MSF completions while deploying DHSIT devices but have achieved only limited success (Ref. 1 and 2). During such deployments, many challenges and difficulties were faced in the attempt to deploy and retrieve those tools as well as to complete sound data interpretation to successfully identify both reservoir, stimulation, and downhole productivity parameters, and especially when having a combination of both heterogeneous rocks having retrograde gas pressure-volume-temperature (PVT) complexities. Therefore, a robust design of a DHSIT was needed to accurately shut-in the well, hold differential pressure, capture downhole pressure transient data, and thereby identify acid fracture design/conductivity, evaluate total KH, reduce wellbore storage effects, properly evaluate transient pressure effects, and then obtain a better understanding of frac geometry, reservoir parameters, and geologic uncertainties. Several aspects were taken into consideration for overcoming those challenges when preparing the DHSIT tool design including but not limited to proper metallurgy selection, enough gas flow area, impact on well drawdown, tool differential pressure, proper elastomer selection, shut-in time programming, internal completion diameter, and battery operation life and temperature. This paper is based on the first successful deployment and retrieval of the DHSIT in a 4-½" MSF sour carbonate gas well. The trial proved that all design considerations were important and took into consideration all well parameters. This project confirmed that DHSIT devices can successfully withstand the challenges of operating in sour carbonate MSF gas wells as well as minimize operational risk. This successful trial demonstrates the value of utilizing the DHSIT, and confirms more tangible values for wellbore conductivity post stimulation. All this was achieved by the proper metallurgy selection, maximizing gas flow area, minimizing the impact on well drawdown, and reducing well shut-in time and deferred gas production. Proper battery selection and elastomer design also enabled the tool to be operated at temperatures as high as 350 °F. The case study includes the detailed analysis of deployment and retrieval lessons learned, and includes equalization procedures, which added to the complexity of the operation. The paper captures all engineering concepts, tool design, setting packer mechanism, deployment procedures, and tool equalization and retrieval along with data evaluation and interpretation. In addition to lessons learned based on the field trial, various recommendations will be presented to minimize operational risk, optimize shut-in time and maximize data quality and interpretation. Utilizing the lessons learned and the developed procedures presented in this paper will allow for the expansion of this technology to different gas well types and formations as well as standardize use to proper evaluate the value of future MSF completions and stimulation designs.


Author(s):  
R.A. Gasumov ◽  
◽  
E.R. Gasumov ◽  

The article discusses the modes of movement of gas-liquid flows in relation to the operating conditions of waterlogged gas wells at a late stage of field development. Algorithms have been developed for calculating gas well operation modes based on experimental work under conditions that reproduce the actual operating conditions of flooded wells of Cenomanian gas deposits. The concept of calculating the technological mode of operation of gas wells with a single-row elevator according to the critical velocity of the upward flow is considered based on the study of the equilibrium conditions of two oppositely directed forces: the gravity of water drops directed downward and the lifting force moving water drops with a gas flow directed upward. A calculation was made according to the method of the averaged physical parameters of formation water and natural gas in the conditions of flooded Cenomanian gas wells in Western Siberia. The results of a study of the dependence of the critical flow rate of Cenomanian wells on bottomhole pressure and diameter of elevator pipes are presented.


2021 ◽  
Vol 135 (4) ◽  
pp. 36-39
Author(s):  
B. Z. Kazymov ◽  
◽  
K. K. Nasirova ◽  

A method is proposed for determining the distribution of reservoir pressure over time in a nonequilibrium-deformable gas reservoir in the case of real gas flow to the well under different technological conditions of well operation, taking into account the real properties of the gas and the reservoir.


1984 ◽  
Vol 24 (02) ◽  
pp. 180-190
Author(s):  
Djebbar Tiab

Abstract This paper presents a new method for correlating real gas pseudopressure values of gas reservoirs containing large amounts of CO2- Special attention is devoted to gas reservoirs in Colorado, New Mexico, and Utah. These reservoirs have 95 to 100% CO2 concentrations. The effects of CO2 on the skin factor also are analyzed. The main results of this study are that (1) the effects of CO2 on the conventional pressure analysis techniques are severe at higher mole fractions and at pseudoreduced pressures greater than one, (2) if real gas pseudopressure data are not properly corrected, the reservoir permeability calculated from pressure buildup and drawdown tests will be considerably less than the actual value, and (3) the proposed technique is simple, quick. and accurate enough to calculate pseudopressure values. This method is also useful in gas reservoirs with 0 to 100% CO2 concentrations. CO2 affects the skin zone both physically and chemically, in most cases favorably. The total skin factor is slightly dependent on time for very short transient flows. However, it ultimately will become constant as the CO2 gas sweeps the entire skin zone. Introduction The bulk of industry research and field testing of CO2 has been directed toward miscible displacement. This method of using CO2 appears to have greatest potential for oil recovery not possible by conventional producing methods. However, the potential for this process will he significant only if CO2 Can be found in enough quantity to treat many fields. The most plausible source of adequate volumes Of CO2 at a cost low enough for CO2 flooding appears to be either from existing known and undeveloped sources of naturally occurring CO2 or from future such discoveries. There are several areas in the U.S. where CO2 is known to occur naturally. Fig. 1 illustrates locations of wells that have produced significant concentrations of CO2. The pressure tests and correlation charts presented in this paper are from wells located in southern Colorado as shown in this figure. Actual CO2 reserves that might be contained in these various geographical areas ar-e unknown. Future large reserves of naturally occurring CO2 most likely would be located in the Four Corners area, the northeast New Mexico/southeast Colorado area, and central Mississippi, and would occur in reservoirs of high-purity CO2. This study analyzes pressure behavior of such reservoirs. Gas flow through porous media has been the object of considerable research. Up to the mid-1960's most published articles dealt with ideal gas. But most of these studies were- inadequate for gas reservoirs having high reservoir pressures, low permeabilities, and/or containing large amounts of contaminants such as CO2, nitrogen (N2), and hydrogen sulfide (H2S)- Several theories dealing with these problems were published. The most pertinent ones to this study are the papers by Al Hussainy et al., Al Hussainy and Ramey, and Zana and Thomas. Al Hussainy et al. introduced the concept of real gas potential, which eliminates the need to neglect the pressure dependence of gas viscosity and the gas deviation factor. The assumption of small pressure gradients was also eliminated. Al Hussainy and Ramey showed how the concept of real gas potential or the real gas pseudopressure could be used to analyze pressure transient tests. A few years later, Zana and Thomas investigated some of the effects of gas contaminants on real gas flow. They generated tables of the real gas pseudopressure function for various concentrations of N2, CO2, and H2S. Their study, however, did not consider the case of the high-purity CO2 reservoirs- Some of the other papers found useful to this study are by Carter, Dranchuk and Chwyl, Coats et al., Aziz et al., Robinson et al., Buxton, and Dewitt and Thodos. For instance, the study by Robinson et al. showed that there is a definite departure by the gas compressibility curve for CO2 from that of hydrocarbons, and that the value of this departure increases for higher amounts Of CO2. This departure is most significant at approximately 2,000 psia [13.8 MPa] and at low temperatures. Buxton determined the values of the gas compressibility factor at different concentrations Of CO2 in a mixture with hydrocarbon gases. Finally, Dewitt and Thodos experimentally demonstrated that the viscosities of various mixtures of gases increase with pressure as the CO2 content increases. This study investigates the pressure behavior of high- purity CO2 reservoirs-i.e., reservoirs with 60 to 100% CO2 concentrations. In particular, pseudopressure values of such reservoirs are generated and semiempirical relations are developed. Furthermore, a study by Keio Toi on diffusion of CO2 through glassy polymers and Ref. 12 provide the basis to investigate qualitatively the effects Of CO2 on the skin factor. Real Gas Pseudopressure Function As shown in Ref. 1, transient flow of real gas through porous media can be described by (1) SPEJ P. 180^


2012 ◽  
Vol 496 ◽  
pp. 347-350
Author(s):  
Qing Min Zhao ◽  
Xiang An Yue ◽  
Fei Wang

The flow characteristics of nitrogen in microtubes with diameters of 14.9, 10.1, 5.03 and 2.05μm are investigated experimentally under high pressure conditions. The results show that the high pressure flow characteristics of nitrogen in microtube with the diameter of 14.9μm are in accordance with the classical fluid mechanics theory. However, with the decrease of the inner diameter of microtube, gas flow shows an apparent microscale effect and the results depart from the theoretical predictions of the conventional theory, moreover the smaller the diameter, the stronger the microscale effect. Besides, the high pressure microscale effect can not be characterized by the Knudsen number, which is proposed for studying rarefaction effect at low-pressure. Because of the existence of high-pressure microscale effect, it is inappropriate to study the real gas seepage characteristic in reservoir through the flow experiment at low pressure.


2021 ◽  
Vol 5 ◽  
pp. 216-232
Author(s):  
Tao Chen ◽  
Bijie Yang ◽  
Miles Robertson ◽  
Ricardo Martinez-Botas

Real-gas effects have a significant impact on compressible turbulent flows of dense gases, especially when flow properties are in proximity of the saturation line and/or the thermodynamic critical point. Understanding of these effects is key for the analysis and improvement of performance for many industrial components, including expanders and heat exchangers in organic Rankine cycle systems. This work analyzes the real-gas effect on the turbulent boundary layer of fully developed channel flow of two organic gases, R1233zd(E) and MDM - two candidate working fluids for ORC systems. Compressible direct numerical simulations (DNS) with real-gas equations of state are used in this research. Three cases are set up for each organic vapour, representing thermodynamic states far from, close to and inside the supercritical region, and these cases refer to weak, normal and strong real-gas effect in each fluid. The results within this work show that the real-gas effect can significantly influence the profile of averaged thermodynamic properties, relative to an air baseline case. This effect has a reverse impact on the distribution of averaged temperature and density. As the real-gas effect gets stronger, the averaged centre-to-wall temperature ratio decreases but the density drop increases. In a strong real-gas effect case, the dynamic viscosity at the channel center point can be lower than at channel wall. This phenomenon can not be found in a perfect gas flow. The real-gas effect increases the normal Reynolds stress in the wall-normal direction by 7–20% and in the spanwise direction by 10–21%, which is caused by its impact on the viscosity profile. It also increases the Reynolds shear stress by 5–8%. The real-gas effect increases the turbulence kinetic energy dissipation in the viscous sublayer and buffer sublayer <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mo><</mml:mo><mml:mn>30</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> but not in the outer layer. The turbulent viscosity hypthesis is checked in these two fluids, and the result shows that the standard two-function RANS model (<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ϵ</mml:mi></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ω</mml:mi></mml:math></inline-formula>) with a constant <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>C</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>0.09</mml:mn></mml:math></inline-formula> is still suitable in the outer layer <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mo>></mml:mo><mml:mn>70</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula>, with an error in ±10%.


Author(s):  
Karsten Hasselmann ◽  
Stefan aus der Wiesche ◽  
Eugeny Y. Kenig

Abstract In this contribution, an assessment of compressible Reynolds Averaged Navier Stokes equations (RANS) and Large Eddy Simulation (LES) is presented using transonic organic vapor flow past a NACA4412 airfoil as a case study. The NACA4412 represents a canonical geometry, which, in case of air, has been well investigated numerically and experimentally. The results of the real gas simulations are compared with those of air simulations. For the real gas, the organic vapor Novec 649® is chosen as a representative fluid. The thermodynamic behavior of Novec 649® is modeled with the Peng-Robinson equation of state. Different inlet Mach numbers are applied, namely, a sub-critical, the critical, and a super-critical Mach number. It turns out, that the critical Mach number of the NACA4412 airfoil increases when Novec 649® is used as working fluid. Furthermore, it is shown that real gas flow simulations cause additional difficulties for the computational fluid dynamics (CFD) analysis. Although the speed of sound of Novec 649® is lower than the speed of sound of air, a finer grid resolution is required for the real gas simulations due to its high density. Based on an extensive simulation study, an assessment of different numerical modelling strategies and methods is given.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yudan Li ◽  
Shaohua Gu ◽  
Cheng Dai

The presence of water, i.e., connate or hydraulic fracturing water, along with the gaseous hydrocarbons in shale nanopores is largely overlooked by previous studies. In this work, a new unified real gas-transport model has been developed for both organic and inorganic porous media accounting for the nanoconfined water film flow. More specifically, a gas core flows in the center of the organic/inorganic pore surrounded by a water film which can be further divided into an interfacial region (near-wall water) and bulk region (bulk water). We differentiate the varying water viscosity between the two regions and consider disparate slip boundaries; that is, the near-wall water can slip along the hydrophobic organic pore surface while it is negligible in hydrophilic inorganic pores. Incorporating modified boundary conditions into the Navier-Stokes equations, gas transport model through single organic/inorganic pore is derived. The model is also comprehensively scaled up to the porous media scale considering the porosity, tortuosity, and total organic carbon (TOC) contents. Results indicate that the gas flow capacity decreases in moist conditions with mobile or nonmobile water film. A mobile water film, however, compensates its negative effect up to 50% by enhancing gas flow compared with static water molecules. The real gas flow is dominated by the gas slippage and water film mobility which are dependent upon pore-scale parameters such as pore sizes, topology, pressure, and surface wettability. Compared with inorganic pores, gas transport in organic pores is greatly enhanced by the water film flow due to the strong water slip. Moreover, the contribution of water film mobility is remarkable in small pores with large contact angles, especially at high pressures. At moist conditions, the real gas effect enhances gas flow by improving both gas slippage and water film mobility, which is more prominent in smaller pores at high pressures. The presented model and its results will further advance our understanding of the mechanisms responsible for the water and gas transport in nanoporous media, and consequently, the hydrocarbon exploration of shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document