Planning And Development Of Polymer Assisted Surfactant Flooding For The Gullfaks Field, Norway

1998 ◽  
Vol 1 (02) ◽  
pp. 161-168 ◽  
Author(s):  
T. Maldal ◽  
E. Gilje ◽  
R. Kristensen ◽  
T. Karstad ◽  
A. Nordbotten ◽  
...  

Abstract This paper presents parts of the work performed in order to develop and qualify a Polymer Assisted Surfactant Flooding (PASF) system for economical use in the Gullfaks Field. The paper addresses experimental work done in the laboratory, numerical simulation of PASF, and the evaluation of the potential for PASF in full field scale. The experimental part comprises core flooding experiments at different temperatures, pressures, and gas-oil ratios in order to optimise the PASF system for the Gullfaks Brent formation conditions. The surfactant in the PASF system is a branched sulphonate (5000 ppm) and xanthan (500 ppm). The surfactant-polymer slug is followed by a slug of xanthan (500 ppm) for mobility control. No cosolvent is used. In coreflood experiments more than 70 percent of the waterflood residual oil was recovered. By using reservoir simulation a suitable pilot area was found in the Brent reservoir. Additional results from simulations were the amount of chemicals, the time needed for the pilot test, and additional oil recovery. Much effort was put into estimating the full field PASF potential. Firstly, the areas of the field where PASF possibly could be used were selected. Key factors were existing and planned well locations, production data, and long term production forecasts. Then the amount of chemicals needed and the expected technical efficiency for each area were calculated. To verify these calculations, an area of the field containing two possible injection wells, and three producers, was selected for a simulation study. This area was considered as the most promising area for PASF. The main conclusion from this work is that, with the present crude oil price and chemical costs, the PASF process is not economical attractive for use in the Gullfaks field, mainly because the residual oil was considerable lower than believed at project start. Introduction The Gullfaks field is located in the north-eastern part of block 34/10 in the Norwegian sector of the North Sea. The oil production started in December 1986 and the cumulative oil production to date is 168 mill. Sm3 or 59 % of recoverable reserves. Water injection is the current drive mechanism, aiming at maintaining reservoir pressure above the bubble point. At the project start in 1989, the Gullfaks field was from a technical standpoint a prime target for enhanced oil recovery . The residual oil saturation after waterflooding was believed to be about 0.35, which indicated a high technical potential for surfactant flooding. Most of the reservoir characteristics are favourable for PASF, i. e. multidarcy sands, low oil viscosity (1.5 cP), relatively low reservoir temperature (70 C) and low salinity of the formation water (42000 ppm) and moderate low clay content (5-10 %). A single well injection test with surfactant alone was performed during the first half of 1992. The surfactant was successfully injected without any special treatment of the injection water, and the test confirmed that residual oil was mobilised by the surfactant. Exxon conducted a series of five pilot tests in the Loudon field from 1980 to 1989. The test sizes ranged from a single pattern of 2800 m2 to multi-pattern tests with pilot areas of 161600 m2 and 323200 m2 areas, respectively. For the 2800 m2 pilot, recovery was 68 % of the waterflood residual oil. In the larger multi-pattern floods, oil recovery dropped to 26.9 % in the 161600 m2 and 33.4 % in the 323200 m2 project. The tests showed that the use of polymer in the injection water is crucial for obtaining a successful surfactant flooding. An other observation in these field tests was that the surfactant retention was less than half of that measured in conventional laboratory coreflood experiments. This was explained by a change of wettability from aerobic, oxidising conditions, in the laboratory, to the anaerobic, reducing conditions, in the reservoir.

2018 ◽  
Vol 40 (2) ◽  
pp. 85-90
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing ◽  
Usman Usman

The formation of microemulsion in the injection of surfactant at chemical flooding is crucial for the effectiveness of injection. Microemulsion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemulsion. Its translucent homogeneous mixtures of oil and water in the presence of surfactant is believed to displace the remaining oil in the reservoir. Previously, we showed the effect of microemulsion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that suffi cient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemulsion flooding to enhance the oil recovery in the targeted representative core has not been investigated.In this article, the performance of microemulsion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale through the core flooding experiment. Microemulsion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscosity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemulsion-based formulation to recover the oil production. The results showed that polymer at 2200 ppm in the ASP mixtures can generate 12.16 cP solution which is twice higher than the oil viscosity to prevent the fi ngering occurrence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recovery after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71% of initial oil saturation (Soi). Those results conclude that the microemulsion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir.


2021 ◽  
Author(s):  
Thaer I. Ismail ◽  
Emad W. Al-Shalabi ◽  
Mahmoud Bedewi ◽  
Waleed AlAmeri

Abstract Gas injection is one of the most commonly used enhanced oil recovery (EOR) methods. However, there are multiple problems associated with gas injection including gravity override, viscous fingering, and channeling. These problems are due to an adverse mobility ratio and cause early breakthrough of the gas resulting, in poor recovery efficiency. A Water Alternating Gas (WAG) injection process is recommended to resolve these problems through better mobility control of gas, leading to better project economics. However, poor WAG design and lack of understanding of the different factors that control its performance might result in unfavorable oil recovery. Therefore, this study provides more insight into improving WAG oil recovery by optimizing different surface and subsurface WAG parameters using a coupled surface and subsurface simulator. Moreover, the work investigates the effects of hysteresis on WAG performance. This case study investigates a field named Volve, which is a decommissioned sandstone field in the North Sea. Experimental design of factors influencing WAG performance on this base case was studied. Sensitivity analysis was performed on different surface and subsurface WAG parameters including WAG ratio, time to start WAG, total gas slug size, cycle slug size, and tubing diameter. A full two-level factorial design was used for the sensitivity study. The significant parameters of interest were further optimized numerically to maximize oil recovery. The results showed that the total slug size is the most important parameter, followed by time to start WAG, and then cycle slug size. WAG ratio appeared in some of the interaction terms while tubing diameter effect was found to be negligible. The study also showed that phase hysteresis has little to no effect on oil recovery. Based on the optimization, it is recommended to perform waterflooding followed by tertiary WAG injection for maximizing oil recovery from the Volve field. Furthermore, miscible WAG injection resulted in an incremental oil recovery between 5 to 11% OOIP compared to conventional waterflooding. WAG optimization is case-dependent and hence, the findings of this study hold only for the studied case, but the workflow should be applicable to any reservoir. Unlike most previous work, this study investigates WAG optimization considering both surface and subsurface parameters using a coupled model.


2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

Chemical Enhanced Oil Recovery (cEOR) processes comprise a number of techniques whichmodify the rock/fluid properties in order to mobilize the remaining oil. Among these, surfactantflooding is one of the most used and well-known processes; it is mainly used to decrease the interfacialenergy between the phases and thus lowering the residual oil saturation. A novel two-dimensionalflooding simulator is presented for a four-component (water, petroleum, surfactant, salt), two-phase(aqueous, oleous) model in porous media. The system is then solved using a second-order finitedifference method with the IMPEC (IMplicit Pressure and Explicit Concentration) scheme. The oilrecovery efficiency evidenced a strong dependency on the chemical component properties and itsphase behaviour. In order to accurately model the latter, the simulator uses and improves a simplifiedternary diagram, introducing the dependence of the partition coefficient on the salt concentration.Results showed that the surfactant partitioning between the phases is the most important parameterduring the EOR process. Moreover, the presence of salt affects this partitioning coefficient, modifyingconsiderably the sweeping efficiency. Therefore, the control of the salinity in the injection water isdeemed fundamental for the success of EOR operations with surfactants.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


Author(s):  
Fernancelys Rodriguez M.

Abstract Venezuela has been ranked as a potential oil producer country thanks to its huge reserves of conventional and unconventional oils. Conventional reservoirs with complex fluid systems, located in the North of Monagas state, where it is possible to observe thick fluid columns with significant compositional gradients (showing changes from gas condensate to non-mobile oil-Tar mat). In these types of reservoirs EOR methods such as miscible gas flooding have been successfully applied to compensate pressure decline and avoid asphaltene deposition issues. Production of unconventional oils, the largest highly-viscous oil reservoir of La Faja Petrolifera del Orinoco (La FPO), demands great challenges. Discovered in the 1930’s, the first rigorous evaluations of this reservoir started in the 1980s [1]; those huge deposits of highly viscous oils were considered technically and economically unattractive at that time. Due to production decline of conventional oil reservoirs, efforts are being done by the Venezuelan National Oil Company and collaborators to develop EOR projects to achieve increasing oil production in unconventional (heavy and extra-heavy) reservoirs, being the most promising options thermal and chemical EOR methods. Some authors agree that in the FPO, only 40–65% (depending on the site) of the oil-bearing formations is suitable for thermal EOR methods. Recent works have been showing the potential of chemical EOR for extra-heavy oils in La FPO [2, 3, 4, 5, 6, 7, 8, 9], mostly for mobility control and mobilization of residual oil. This work presents a literature review of the EOR projects in Venezuela for conventional and highly viscous oils, based on both lab and field experiences, and the perspectives for applications to increase Venezuelan oil production.


1981 ◽  
Vol 103 (4) ◽  
pp. 285-290 ◽  
Author(s):  
K. I. Kamath ◽  
S. J. Yan

The theory of enhanced oil recovery by surfactant flooding (micellarpolymer and “low-tension” floods) is based on three premises: that the chemical slug is 1) less mobile than the crude oil, 2) miscible with the reservoir fluids (oil and brine), and 3) stable over long periods of time (years) in the reservoir environment. We report here a rather simple process in which none of these expensive and exacting requirements have to be met. In this process, relatively small amounts of “EOR-active” substances present in certain petroleum-based sulfonates are found to recover 15–20 percent of the residual oil from waterflooded Berea sandstone cores. The chemicals are injected in the form of slugs of their aqueous solutions. If the chemical slugs are followed with similar slugs of additives such as partially hydrolyzed polyacrylamide, acrylamide monomer, urea, EDTA, or anions such as P2O7‴‴‴‴ and PO4‴‴‴, the oil recovery is increased 30–40 percent of the in-place residual oil. The concentrations of the “active” sulfonate and additive in their respective slugs appear to be of the order of 500 ppm or less. Extrapolation of the laboratory data to field conditions indicate that chemical requirements for the recovery of a barrel of tertiary oil are about 0.5–2 lb of sulfonate and a like amount of additive. The main features of the displacement process are: 1) Oil recovery is independent of oil viscosity in the tested range of 0.4–100 cps. 2) The process is essentially an immiscible displacement in which oil recovery depends on the amount of active chemical in the slug and not its concentration. 3) Tertiary oil is produced in the form of a clean “oil bank” and the buildup of a residual oil saturation at the producing end of linear cores occurs during the flood. From the data on hand, it is apparent that the oil recovery mechanism differs basically in character from the conventional Buckley-Leverett-type immiscible displacement. The low level concentrations of sulfonate and additive involved, and the independence of oil recovery with respect to oil viscosity suggest that the recovery mechanism is possibly actuated by certain specific functional groups in the structure of the EOR-active molecule or its anion, and of the additive. The results hold great potential for developing a simple and economical tertiary oil recovery process that can recover, very substantially, more oil (light as well as moderately viscous) than is now considered possible by conventional chemical floods.


Author(s):  
Ayako Fukumoto ◽  
Christine Dalmazzone ◽  
Didier Frot ◽  
Loïc Barré ◽  
Christine Noïk

Surfactant flooding is a chemical enhanced oil recovery (EOR) process which consists in injecting optimized formulations of surfactants in the reservoir in order to remobilize the residual oil trapped in the pores of the rock. To do that, it is necessary to design specific formulations in order to get so-called Winsor III systems of very low interfacial tensions with the crude oil. Unfortunately, there is no well-established way to characterize and understand the physical properties and structures of microemulsions composed of crude oil and industrial surfactants due to their extreme complexity. In a previous work, we have developed a methodology based on the use of several techniques (DLS, MLS, SAXS, cryo-SEM, DSC, interfacial measurements, etc.) allowing physico-chemical and morphological characterization of these microemulsions in the case of a model system. In this article, we will demonstrate how DSC can be used to provide information on the physico-chemical composition of complex microemulsions (water and oil content, salinity, etc.) and on their morphology (continuous phase, dispersed phase, etc.).


Sign in / Sign up

Export Citation Format

Share Document