Rheology of Various Drilling Fluid Systems Under Deepwater Drilling Conditions and the Importance of Accurate Predictions of Downhole Fluid Hydraulics

Author(s):  
J.M. Davison ◽  
S. Clary ◽  
A. Saasen ◽  
M. Allouche ◽  
D. Bodin ◽  
...  
Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Biao Ma ◽  
Xiaolin Pu ◽  
Zhengguo Zhao ◽  
Hao Wang ◽  
Wenxin Dong

The lost circulation in a formation is one of the most complicated problems that have existed in drilling engineering for a long time. The key to solving the loss of drilling fluid circulation is to improve the pressure-bearing capacity of the formation. The tendency is to improve the formation pressure-bearing capacity with drilling fluid technology for strengthening the wellbore, either to the low fracture pressure of the formation or to that of the naturally fractured formation. Therefore, a laboratory study focused on core fracturing simulations for the strengthening of wellbores was conducted with self-developed fracture experiment equipment. Experiments were performed to determine the effect of the gradation of plugging materials, kinds of plugging materials, and drilling fluid systems. The results showed that fracture pressure in the presence of drilling fluid was significantly higher than that in the presence of water. The kinds and gradation of drilling fluids had obvious effects on the core fracturing process. In addition, different drilling fluid systems had different effects on the core fracture process. In the same case, the core fracture pressure in the presence of oil-based drilling fluid was less than that in the presence of water-based drilling fluid.


2001 ◽  
Author(s):  
Eirik S. rgård ◽  
Eva Alterås ◽  
Gunnar Fimreite ◽  
Andrew Dzialowski ◽  
Grete S. Svanes

Author(s):  
John Shelton ◽  
John Rogers Smith ◽  
Anuj Gupta

A dual gradient, deepwater drilling system based on dilution of riser mud requires economically separating the riser mud into a low density dilution fluid and a higher density drilling fluid. This study investigated the practicality of accomplishing this separation using hydrocyclones and centrifuges and examined the possible benefits and efficiency of each. The separation experiments were conducted using a laboratory centrifuge and 2 inch hydrocyclones. The laboratory centrifuge was able to separate the riser mud into near ideal densities for dilution and drilling fluid. However, the dense slurry retained in the centrifuge had lower emulsion stability than the feed stream. The hydrocyclones achieved much less contrast in density between the low and high density discharges, but consistently resulted in a beneficial increase in the stability of the mud emulsion in all of the flow streams and had more desirable rheological properties. A qualitative comparison indicates that the hydrocyclone separation system may offer a feasible and desirable alternative to centrifuge separation system.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Abstract It is nowadays well accepted that the steady state rheological behavior of drilling fluids must be modelled by at least three parameters. One of the most often used models is the yield power law, also referred as the Herschel-Bulkley model. Other models have been proposed like the one from Robertson-Stiff, while other industries have used other three-parameter models such as the one from Heinz-Casson. Some studies have been made to compare the degree of agreement between different rheological models and rheometer measurements but in most cases, already published works have only used mechanical rheometers that have a limited number of speeds and precision. For this paper, we have taken measurements with a scientific rheometer in well-controlled conditions of temperature and evaporation, and for relevant shear rates that are representative to normally encountered drilling operation conditions. Care has been made to minimize the effect of thixotropy on measurements, as the shear stress response of drilling fluids depends on its shear history. Measurements have been made at different temperatures, for various drilling fluid systems (both water and oil-based), and with variable levels of solid contents. Also, the shear rate reported by the rheometer itself, is corrected to account for the fact that the rheometer estimates the wall shear rate on the assumption that the tested fluid is Newtonian. A measure of proximity between the measurements and a rheological model is defined, thereby allowing the ranking of different rheological behavior model candidates. Based on the 469 rheograms of various drilling fluids that have been analyzed, it appears that the Heinz-Casson model describes most accurately the rheological behavior of the fluid samples, followed by the model of Carreau, Herschel-Bulkley and Robertson-Stiff, in decreasing order of fidelity.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2206-2219
Author(s):  
Changbin Kan ◽  
Deli Gao ◽  
Jin Yang

Summary Drill-conductor-jetting technology is a high-efficiency, good-adaptability, and low-cost technology that has been widely applied in deepwater drilling. However, a reaming effect will be produced easily because of jet breaking and bit rotation during the jetting process, and the critical displacement would be notably affected. Also, it will experience a relatively short soaking time after installation because of the requirements of drilling timeliness, which is an important factor on the bearing safety of a conductor. Therefore, it is meaningful to study the influencing factors of construction conditions and establish a model for evaluating the value of critical displacement. In this study, field experiments on critical displacement for simulating the deepwater-drilling conditions were conducted. By analyzing the drilling hydraulic factors, the effects of soil-stress-recovery time, and the injection rate of pipe, the influence laws of different factors were obtained. The results suggest that the critical displacement increases linearly as the circulation rate of the drilling fluid increases, decreases exponentially with the increase of soil-stress-recovery time, and decreases linearly with the increase of injection rate. One model for estimating the critical displacement using experimental data and the least-squares method was proposed. The predictions showed good agreement with experimental data within suitable ranges of models. This work is expected to provide the basis for predicting conductor stability and wellhead-bearing settlement.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Kshitij Mohan ◽  
Faraaz Adil ◽  
Robello Samuel

Over the last few years, different types of bits have been introduced to meet the challenges of steerable as well as rotary steerable systems; and it is imperative that bits be utilized optimally in these systems. As challenges increase with increasing depths, it becomes even more important for one to efficiently utilize the available energy (Robello, S., 2013, “Modeling and Analysis of Drillstring Vibration in Riserless Environment,” ASME J. Energy Res. Technol., 135(1), p. 013101). A new correlation identifying inefficient drilling conditions is presented in this paper. Mechanical specific energy (MSE) has been used to improve drilling rates, with mixed results. Hydro MSE (HMSE), which is introduced here, encompasses hydraulic as well as mechanical energy. HMSE quantifies the amount of energy required to drill a unit volume of rock and remove it from underneath the bit. HMSE includes axial, torsional, and hydraulic energy and is different from MSE because it includes a hydraulic term. The initial MSE correlation (Teale, R., 1965, “The Concept of Specific Energy in Rock Drilling,” Int. J. Rock Mech. Min. Sci., 2, pp. 57–73.) was modified to accommodate the new hydraulic term. This paper attempts to better model downhole drilling by introducing the hydraulic energy term in the MSE correlation by defining it as HMSE. While the majority of the drilling occurs because of the bit, it is a well-known fact that some drilling occurs due to the “jet impact impingement” caused by the drilling fluid as well. Experimental and field data presented in this paper show that HMSE can identify inefficient drilling conditions. The new hydraulic term included in the specific energy correlation is the key to correctly match the amount of energy required to drill and overcome the strength and stresses of formation being drilled. Also, this new term illustrates how much hydraulic energy is needed to drill faster when the mechanical energy (axial and torsional) is increased. The results also show the importance of including the bit hydraulic energy term into any specific energy analysis for drilling optimization. Field results reveal specific patterns for inefficient drilling conditions and also reveal a good correlation between calculated HMSE and the expected requirements for rock removal under existent conditions of stress at the bit face (Mohan, K., and Robello Samuel, F. A., 2009, “Tracking Drilling Efficiency Using Hydro-Mechanical Specific Energy,” SPE/IADC Drilling Conference and Exhibition, March 17–19, Amsterdam, The Netherlands, No. SPE 119421).


Sign in / Sign up

Export Citation Format

Share Document