Phase-Behavior Properties of CO2 - Reservoir Oil Systems

1978 ◽  
Vol 18 (01) ◽  
pp. 20-26 ◽  
Author(s):  
Ralph Simon ◽  
A. Rosman ◽  
Erdinc Zana

February 1978 Original manuscript received in Society of Petroleum Engineers office Jan. 14, 1977. Paper accepted for publication Aug. 15, 1977. Revised manuscript received Sept. 21, 1977. Paper (SPE 6387) was presented at the SPE-AIME Permian Basin Oil and Gas Recovery Conference, held in Midland, Tex., March 10-11, 1977. Abstract This paper presents experimental phase behavior data on two CO2-reservoir oil systems at reservoir pressures and temperatures. pressures and temperatures. The data includepressure-composition diagrams with bubble points, dew points, and critical points;vapor-liquid equilibrium compositions and related K values;vapor and liquid densities compared with values calculated by the Redlich-Kwong equation of state;vapor and liquid viscosities compared with predictions by the Lobrenz-Bray-Clark correlation; andinterfacial tensions for six vapor-liquid mixtures compared with values calculated by the Weinaug-Katz parachor equation. These and other published data contribute to development of the generalized correlations needed by reservoir and production engineers for evaluating, designing, and efficiently operating CO2-injection projects. projects Introduction This paper presents experimental phase behavior data for two CO2-reservoir oil systems. These data are used in predicting the performance of CO2 floods with a compositional simulator. The simulator calculates vapor and liquid compositions, densities, viscosities, and interfacial tensions to describe the phase behavior as the injected CO2 advances through phase behavior as the injected CO2 advances through the reservoir. The simulator predictions are used to evaluate proposed projects and to design and efficiently operate approved ones. The data in this paper consist of pressure-composition diagrams with bubble points, pressure-composition diagrams with bubble points, dew points, and critical points; and compositions, densities, viscosities, and interfacial tensions of vapors and liquids in equilibrium in the two-phase region. These data were obtained by the experimental procedure shown in Fig. 1. procedure shown in Fig. 1. We have compared our measured data with values calculated by existing methods: Redlich-Kwong equation for densities, Lohrenz-Bray-Clark correlation for viscosities, and the Weinaug-Katz parachor equation for interfacial tension. We found parachor equation for interfacial tension. We found that these published methods give acceptable agreement in some areas, but in general, they are not satisfactory for engineering purposes. Therefore, we conclude that improved calculation methods are needed for CO2 systems. For the special case of compositional simulator applications, we devised a technique for obtaining satisfactory calculated density, viscosity, and interfacial tension values. This technique is discussed in the section on "Measurements vs Calculations." We believe that our data, along with previously published information and information yet to come, published information and information yet to come, will advance the development of satisfactory correlations, thus reducing the need for extensive laboratory studies of individual systems. PRESSURE-COMPOSITION DIAGRAMS PRESSURE-COMPOSITION DIAGRAMS OIL A Ten mixtures of CO2 and Reservoir Oil A were prepared. These mixtures contained CO2 concentrations prepared. These mixtures contained CO2 concentrations of 0, 20, 40, 55, 60, 65. 70, 75, 80, and 90 mol percent. At 130 degrees F, pressure traverses were made with each mixture. These traverses started in the single-phase region at a pressure above the bubble (or dew) points and lowered the pressure in discrete steps, passing from the single-phase into the two-phase region. At each step, the vapor and liquid volumes were measured. The results are described in Fig. 2A. At 130 degrees F, the critical point of the CO2-Reservoir Oil A system (where intensive properties of the gas and liquid phases were equal) properties of the gas and liquid phases were equal) is 2,570 psia and 60-mol percent CO2. OIL B Eight mixtures of CO2 and Reservoir Oil B also were prepared and studied in the visual cell at 255 degrees F. CO2 concentrations for these mixtures were 0, 20, 40, 55, 65, 75, 80, and 85 mol percent. The pressure was varied from 800 to 6,100 psia, and the pressure was varied from 800 to 6,100 psia, and the relative vapor and liquid volumes measured. The results are given in Fig. 2B. The critical point of the CO2-Reservoir Oil B system at 255 degrees F is 4,890 psia and 74-mol percent CO2. psia and 74-mol percent CO2. SPEJ P. 20

Author(s):  
Md. Hamidul Kabir ◽  
Ravshan Makhkamov ◽  
Shaila Kabir

The solution properties and phase behavior of ammonium hexylene octyl succinate (HOS) was investigated in water and water-oil system. The critical micelle concentration (CMC) of HOS is lower than that of anionic surfactants having same carbon number in the lipophilic part. The phase diagrams of a water/ HOS system and water/ HOS/ C10EO8/ dodecane system were also constructed. Above critical micelle concentration, the surfactant forms a normal micellar solution (Wm) at a low surfactant concentration whereas a lamellar liquid crystalline phase (La) dominates over a wide region through the formation of a two-phase region (La+W) in the binary system. The lamellar phase is arranged in the form of a biocompatible vesicle which is very significant for the drug delivery system. The surfactant tends to be hydrophilic when it is mixed with C10EO8 and a middle-phase microemulsion (D) is appeared in the water-surfactant-dodecane system where both the water and oil soluble drug ingredient can be incorporated in the form of a dispersion. Hence, mixing can tune the hydrophile-lipophile properties of the surfactant. Key words: Ammonium hexylene octyl succinate, mixed surfactant, lamellar liquid crystal, middle-phase microemulsion. Dhaka Univ. J. Pharm. Sci. Vol.3(1-2) 2004 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


1997 ◽  
Vol 481 ◽  
Author(s):  
J.-H. He ◽  
E. Ma

ABSTRACTA model analysis is presented which explains ball-milling induced alloying in positive-heatof- mixing systems in terms of a dynamic balance between externally forced mixing and thermal phase decomposition mediated by deformation-enhanced population of defects. The possibility of eliminating the thermal decomposition to force single phase formation is examined by milling Cu- Fe and Cu-Ta powder mixtures at the liquid nitrogen temperature (LN2T). Over a range of compositions for Cu-Fe and almost the entire composition range for Cu-Ta, the two-phase region observed for room-temperature (RT) milling persisted after cryomilling. The moderate temperature dependence of milling-induced alloying is interpreted by analyzing the dynamics of the generation and annihilation of the nonequilibrium vacancies during deformation and impacts in a SPEX mill.


2020 ◽  
Author(s):  
Elena Koldoba

<p>One of the most important  problems for reservoir simulation is the computation of a multicomponent flow of compressible fluids in porous media with mass exchange between phases. Phase equilibrium ratios (K-values) play a fundamental role in such calculating. Current work proposes the new analytical formulas for K-values. The theory takes into account not only the dependence on pressure, temperature and composition, but also takes into account the conditions formation of real fluid in a porous medium. Such accounting is performed with application of the integral fluid parameters, rather than with application individual characteristics of each component. For calculation of these parameters it is necessary to know dependence volumes of gas and liquid phases in some pressure range (in two phase region) and values of compositions at one pressure.</p><p>If combine a compositional model and this K-values approach, it is possible to create an effective model for numerically modeling the complex phase state of solutions. The technique of thermodynamic potentials makes it possible to construct a thermodynamically consistent model of a real solution in an analytical form. The proposed formulas properly describe phase behavior of real solutions in some practically important pressure range for volatile and black oil. The approach can be used for several phases (not only for two phase). Newly developed methods will be added to open source thermo-hydromechanical matlab codes.</p>


Author(s):  
W E Lear ◽  
G M Parker ◽  
S A Sherif

A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics within a jet pump with a mixing region of constant cross-sectional area. The analysis is capable of handling two-phase flows and the resulting flow phenomena such as condensation shocks and the Fabri limit on the secondary mass flowrate. This work presents a technique for quickly achieving first-approximation solutions for two-phase ejectors. The thermodynamic state of the working fluid, R-134a for this analysis, is determined at key locations within the ejector. From these results, performance parameters are calculated and presented for varying inlet conditions. The Fabri limit was found to limit the operational regime of the two-phase ejector because, in the two-phase region, the speed of sound may be orders of magnitude smaller than in a single-phase fluid.


1983 ◽  
Vol 16 (1) ◽  
pp. 99-102 ◽  
Author(s):  
O. S. Mayall

The f.c.c. + tetragonal two-phase region of the Cu–Ni–Zn system has been delineated, and unit-cell parameters along the boundaries determined. Apparently anomalous parameter measurements prevented the determination of the tie lines. A pattern of diffraction broadening from the tetragonal phase common to both the two-phase and single-phase regions was related to the variation in lattice spacing of the tetragonal phase along the boundary. Reasons for this broadening are discussed.


Author(s):  
Manoj Kumar Moharana ◽  
Rohan M. Nemade ◽  
Sameer Khandekar

Hydrogen fuel from renewable bio-ethanol is a potentially strong contender as an energy carrier. Its distributed production by steam reforming of ethanol on microscale platforms is an efficient upcoming method. Such systems require (a) a pre-heater for liquid to vapor conversion of ethanol water mixtures (b) a gas-phase catalytic reactor. We focus on the fundamental experimental heat transfer studies (pool and flow boiling of ethanol-water mixtures) required for the primary pre-heater boiler design. Flow boiling results (in a 256 μm square channel) clearly show the influence of mixture composition. Heat transfer coefficient remains almost constant in the single-phase region and rapidly increases as the two-phase region starts. On further increasing the wall superheat, heat transfer starts to decrease. At higher applied heat flux, the channel is subjected to axial back conduction from the single-phase vapor region to the two-phase liquid-vapor region, thus raising local wall temperatures. Simultaneously, to gain understanding of phase-change mechanisms in binary mixtures and to generate data for the modeling of flow boiling process, pool-boiling of ethanol-water mixtures has also been initiated. After benchmarking the setup against pure fluids, variation of heat transfer coefficient, bubble growth, contact angles, are compared at different operating conditions. Results show strong degradation in heat transfer in mixtures, which increases with operating temperature.


1982 ◽  
Vol 104 (3) ◽  
pp. 234-240 ◽  
Author(s):  
T. J. Louzon

A heat treatment has been developed which produces significant improvements in the tensile properties of Cu-15Ni-8Sn spinodal alloy. The treatment involves solution heat treatment in the two-phase region rather than the single-phase region normally used. After quenching and aging, increased strength and ductility of the alloy over single phase solution heat-treated and aged values were found. The mechanical properties obtained were superior to any previously observed for material of the compositions studied in the solution treated, quenched, and aged condition. Also, the alloys’ transformation kinetics were greatly slowed by the two phase heat-treatment. It is suggested that the increase in strength and slow kinetics of transformation observed are caused by grain size effects and by grain boundary modifications. Resistivity data and etching response corroborate these arguments.


Author(s):  
P. K. Vijayan ◽  
M. Sharma ◽  
D. S. Pilkhwal ◽  
D. Saha ◽  
R. K. Sinha

A one-dimensional theoretical model has been used to analyze the steady state and stability performance of a single-phase, two-phase, and supercritical natural circulation in a uniform diameter rectangular loop. Parametric influences of diameter, inlet temperature, and system pressure on the steady state and stability performance have been studied. In the single-phase liquid filled region, the flow rate is found to increase monotonically with power. On the other hand, the flow rate in two-phase natural circulation systems is found to initially increase, reach a peak, and then decrease with power. For the supercritical region also, the steady state behavior is found to be similar to that of the two-phase region. However, if the heater inlet temperature is beyond the pseudo critical value, then the performance is similar to single-phase loops. Also, the supercritical natural circulation flow rate decreases drastically during this condition. With an increase in loop diameter, the flow rate is found to enhance for all the three regions of operation. Pressure has a significant influence on the flow rate in the two-phase region, marginal effect in the supercritical region, and practically no effect in the single-phase region. With the increase in loop diameter, operation in the single-phase and supercritical regions is found to destabilize, whereas the two-phase loops are found to stabilize. Again, pressure has a significant influence on stability in the two-phase region.


Author(s):  
P. K. Vijayan ◽  
D. S. Pilkhwal ◽  
M. Sharma ◽  
D. Saha ◽  
R. K. Sinha

A one dimensional theoretical model has been used to analyze the steady state and stability performance of single-phase, two-phase and supercritical natural circulation in a uniform diameter rectangular loop. Parametric influences of diameter, inlet temperature and system pressure on the steady state and stability performance has been studied. In the single-phase liquid filled region, the flow rate is found to increase monotonically with power. On the other hand the flow rate in two-phase NCS is found to initially increase, reach a peak and then decrease with power. For the supercritical region also, the steady state behaviour is found to be similar to that of two-phase region. However, if the heater inlet temperature is beyond the pseudo critical value, then the performance is similar to single-phase loops. Also, the supercritical natural circulation flow rate decreases drastically during this condition. With increase in loop diameter, the flow rate is found to enhance for all the three regions of operation. Pressure has a significant influence on flow rate in two-phase region marginal effect in supercritical region and practically no effect in the single-phase region. With increase in loop diameter, operation in the single-phase and supercritical regions is found to destabilize whereas the two-phase loops are found to stabilize. Again, pressure has a significant influence on stability in the two-phase region.


1991 ◽  
Vol 229 ◽  
Author(s):  
M. Park ◽  
S. J. Krause ◽  
S. R. Wilson

AbstractThe effect of deposition temperature and the addition of Si to sputter deposited Al-Cu thin-film microstructure was studied with transmission electron microscopy. Films were studied in the as-deposited and annealed condition. The effects of thermal treatment were studied with in-situ hot stage microscopy. Al2Cu (θ) precipitated at the grain boundaries and the sublayer interface. At higher deposition temperatures, with alloy composition in single phase region (Al-1.5 wt.%Cu), Al2Cu precipitated during cooldown. At lower temperatures, in the two phase Al-0 region, Al2Cu precipitated during deposition. The addition of Si caused formation of Si precipitates and retarded Al2Cu precipitation during deposition or cooldown.


Sign in / Sign up

Export Citation Format

Share Document