Carbon Dioxide Foam Rheology in Porous Media: A CT Scan Study

SPE Journal ◽  
2007 ◽  
Vol 12 (02) ◽  
pp. 245-252 ◽  
Author(s):  
Dongxing Du ◽  
Pacelli Lidio Jose Zitha ◽  
Matthijs G.H. Uijttenhout

Summary Carbon dioxide (CO2) foam has been widely studied in connection with its application in enhanced oil recovery (EOR). This paper reports an experimental study concerning CO2 foam propagation in asurfactant-saturated Bentheim sandstone core and the subsequent liquid injection with the aid of X-ray computed tomography (CT). The experiments were carried out under various system backpressures. It is found that CO2 foam flows in a characteristic front-like manner in the transient stage and that the water saturation keeps at relatively high level at the outlet of the porous media because of CO2 solubility and capillary end effect. The subsequent surfactant solution injection shows a significant fingering behavior, accompanied by a low flow resistance over the core. It is also found that CO2 foam flow shows higher liquid saturation near the outlet and lower pressure drops under higher system backpressures. This can be attributed to the solubility of CO2 in the liquid phase. The results indicate the advantage of using foam in EOR processes such as water alternating foam (WAF), in which foam flow has higher sweep efficiency and stronger mobility control ability compared, for instance, to water alternating gas (WAG). Nevertheless, care should be taken during the water-injection stage in order not to favor the fingering. Introduction Foam applications in EOR and fluid (acid) diversion have grown considerably over the last three decades. For instance, WAGhas been regularly used in the field as a gasflood mobility control measure. Nevertheless, this technique has not always demonstrated the desired beneficial mobility effects because of the gravity segregation and the unstable preceding of the front between the water and moremobile gas (Holm 1987; Smith 1988). Creating foam by adding surfactant to the aqueous phase has proven to be able to increase the total recovery significantly by increasing the apparent viscosity of the system (Holm and Josendal 1974; Ali et al. 1985; Patzek 1996; Zhdanov et al. 1996; Turta and Signhal 1998). There are many attractive features of EOR using CO2 foaminjection. First, carbon dioxide is a proven solvent for reconnecting, mobilizing, and recovering waterflood residual oil. Many studies (Stalkup 1983) have shown that CO2 can achieve miscible-like displacement efficiency through multiple contacts (partitioning and extraction) with the crude oil. Second, CO2 is available naturally in large quantities and as a byproduct of lignite gasification and many manufacturing processes. Its price is also low, and there are no other large-volume uses competing for CO2. Third, with the push toward sustainable power production and the increasing realization for the need to reduce CO2 emissions, EOR using CO2 is becoming an important alternative for geological CO2 storage.

2020 ◽  
Vol 34 (11) ◽  
pp. 14464-14475
Author(s):  
Qichao Lv ◽  
Tongke Zhou ◽  
Rong Zheng ◽  
Xing Zhang ◽  
Zhaoxia Dong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Nadeem Ahmed Sheikh ◽  
Irfan Ullah ◽  
Muzaffar Ali

Carbon dioxide (CO2) storage in natural rocks is an important strategy for reducing and capturing greenhouse gas emissions in the atmosphere. The amount of CO2 stored in a natural reservoir such as natural rocks is the major challenge for any economically viable CO2 storage. The intricate nature of the porous media and the estimates of the replacement of residing aqueous media with the invading CO2 is the challenge. The current study uses MATLAB to construct a similar porous network model for simulation of complex porous storage. The model is designed to mimic the overall properties of the natural porous media in terms of permeability, porosity and inter-pore connectivity. Here a dynamic pore network is simulated and validated, firstly in the case of a porous network with one fluid invading empty network. Subsequently, the simulations for an invading fluid (CO2) capturing the porous media with filled aqueous brine solution are also carried out in a dynamic fashion. This resembles the actual storage process of CO2 sequestration in natural rocks. While the sensitivity analysis suggests that the differential pressure and porosity have a direct effect on saturation, increasing differential pressure or porosity increases the saturation of CO2 storage. The results for typically occurring rocks in Pakistan are also studies and related with the findings of the study.


2021 ◽  
Author(s):  
Ying Yu ◽  
Alvinda Sri Hanamertani ◽  
Shehzad Ahmed ◽  
Zunsheng Jiao ◽  
Jonathan Fred McLaughlin ◽  
...  

Abstract Injecting carbon dioxide (CO2) as foam during enhanced oil recovery (EOR) can improve injectate mobility and increase sweep efficiency. Integrating CO2-foam techniques with carbon capture, utilization and storage (CCUS) operations is of recent interest, as the mobility control and sweep efficiency increases seen in EOR could also benefit CO2 storage during CCUS. In this study, a variety of different charge, hydrocarbon chain length, head group surfactants were evaluated by surface tension, bulk and dynamic CO2-foam performance assessments for CCUS. The optimal foam candidate was expected to provide satisfying mobility control effects under reservoir conditions, leading to an improved water displacement efficiency during CO2-foam flooding that favors a more significant CO2 storage potential. All tested surfactants were able to lower their surface tensions against scCO2 by 4-5 times, enlarging the surface area of solution/gas contact; therefore, more CO2 could be trapped in the foam system. A zwitterionic surfactant was found to have slightly higher surface tension against CO2 while exhibiting the highest foaming ability and the most prolonged foam stability with a relatively slower drainage rate among all tested surfactants. The dynamic performance of scCO2-foam stabilized by this zwitterionic surfactant was also evaluated in sandstone and carbonate cores at 13.79 MPa and 90°C. The results show that the mobility control development in carbonate core was relatively slower, suggesting a gradual foam generation process attributed to the higher permeability than the case in sandstone core. A more significant cumulative CO2 storage potential improvement, quantified based on the water production, was recorded in sandstone (53%) over the carbonate (47%). Overall, the selected foam has successfully developed CO2 mobility control and improved water displacement in the occurrence of in-situ foam generation, hence promoting the storage capacity for the injected CO2. This work has optimized the foaming agent selection method at the actual reservoir conditions and evaluated the scCO2-foam performance in establishing high flow resistance and improving the CO2 storage capacity, which benefits integrated CCUS studies or projects utilizing CO2-foam techniques.


2011 ◽  
Vol 221 ◽  
pp. 15-20 ◽  
Author(s):  
Dong Xing Du ◽  
Ying Ge Li ◽  
Shi Jiao Sun

There are many attractive features for using CO2 foam injection in Enhanced Oil Recovery (EOR) processes. For understanding CO2 foam rheology in porous media, an experimental study is reported in this paper concerning CO2 film foam flow characteristics in a vertical straight tube. Foam is treated as non-Newtonian fluid and its pseudo-plastic behavior is investigated based on power law constitutive model. It is observed the CO2 film foam flow shows clear shear-thinning behavior, with flow consistency coefficient of K=0.15 and flow behavior index of n=0.48. The apparent viscosity of flowing CO2 film foam is under the shear rate of 50s-1 and under the shear rate of 1000s-1, which are 19 and 3 times higher than the single phase water. It is also found CO2 foam has lower apparent viscosity than the foam with air as the internal gas phase, which is in consistence with experimental observations for lower CO2 foam flow resistance in porous media.


Fuel ◽  
2014 ◽  
Vol 126 ◽  
pp. 104-108 ◽  
Author(s):  
Jianjia Yu ◽  
Munawar Khalil ◽  
Ning Liu ◽  
Robert Lee

2015 ◽  
Vol 18 (11) ◽  
pp. 1119-1126 ◽  
Author(s):  
Dongxing Du ◽  
Shengbin Sun ◽  
Na Zhang ◽  
Weifeng Lv ◽  
Dexi Wang ◽  
...  

SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3481-3493
Author(s):  
Guoqing Jian ◽  
Zachary Alcorn ◽  
Leilei Zhang ◽  
Maura C. Puerto ◽  
Samaneh Soroush ◽  
...  

Summary In this paper, we describe a laboratory investigation of a nonionic surfactant for carbon dioxide-(CO2-) foam mobility control in the East Seminole field, a heterogeneous carbonate reservoir in the Permian Basin of west Texas. A method of high-performance liquid chromatography-evaporativelight-scattering detector (HPLC-ELSD) was followed for characterizing the surfactant stability. The foam transport process was studied in the absence and the presence of East Seminole crude oil, with test results showing that strong CO2-foam forms in either a bulk-foam test or foam-flow test. An oxygen scavenger, carbohydrazide, was found effective for controlling the stability of the surfactant up to 80°C and total dissolved solid of ∼34,000 ppm. Moreover, a phosphonate scale inhibitor was investigated and found to be compatible with the oxygen scavenger to accommodate a surfactant solution in a gypsum-oversaturated reservoir brine. During the oil-fractional flow test, an emulsion appears to form, causing a noticeable pressure increase; however, emulsion generation failed to cause a significant phase plugging in the test. Also, a STARS™ (Computer Modelling Group Ltd., Calgary, Alberta, Canada) foam model was applied to obtain the foam parameters from the foam-flow experiments at steady-state conditions. The insights from laboratory experiments better enable translation of the foam technology to the field.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zhuangzhuang Wang ◽  
Zhaomin Li ◽  
Hailong Chen ◽  
Fei Wang ◽  
Dawei Hou ◽  
...  

Foam is widely used as a selective blocking agent through mobility control in oil field development. Its flow behavior in porous media has been investigated sufficiently, but few studies were carried out to understand the change of foam texture in flow. In this work, sandpack and micromodel experiments were conducted simultaneously to analyze foam flow behavior from the perspective of foam texture. Based on the measured flowing pressure and the observed foam image, the correlation between blocking pressure and foam texture was quantitatively investigated. The blocking pressure has a strong correlation with average diameter (-0.906) and variation coefficient (-0.78) and has a positive correlation with the filling ratio (0.84). These indicate that the blocking performance of foam is influenced by its texture closely. But path analysis shows only that the average diameter and variation coefficient have a significant direct effect on blocking pressure (-0.624 and -0.404). These show that the blocking capacity of foam is mainly influenced by the size and uniformity of bubbles. Tiny, dense, and homogeneous foam has a stronger blocking capacity. This study provides a deep insight of foam flow in porous media.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1139-1153 ◽  
Author(s):  
S. B. Fredriksen ◽  
Z. P. Alcorn ◽  
A.. Frøland ◽  
A.. Viken ◽  
A. U. Rognmo ◽  
...  

Summary An integrated enhanced-oil-recovery (EOR) (IEOR) approach is used in fractured oil-wet carbonate core plugs where surfactant prefloods reduce interfacial tension (IFT), alter wettability, and establish conditions for capillary continuity to improve tertiary carbon dioxide (CO2) foam injections. Surfactant prefloods can alter the wettability of oil-wet fractures toward neutral/weakly-water-wet conditions that in turn reduce the capillary threshold pressure for foam generation in matrix and create capillary contact between matrix blocks. The capillary connectivity can transmit differential pressure across fractures and increase both mobility control and viscous displacement during CO2-foam injections. Outcrop core plugs were aged to reflect conditions of an ongoing CO2-foam injection field pilot in west Texas. Surfactants were screened for their ability to change the wetting state from oil-wet using the Darcy-scale Amott-Harvey index. A cationic surfactant was the most effective in shifting wettability from an Amott-Harvey index of –0.56 to 0.09. Second waterfloods after surfactant treatments and before tertiary CO2-foam injections recovered an additional 4 to 11% of original oil in place (OIP) (OOIP), verifying the favorable effects of a surfactant preflood to mobilize oil. Tertiary CO2-foam injections revealed the significance of a critical oil-saturation value below which CO2 and surfactant solution were able to enter the oil-wet matrix and generate foam for EOR. The results reveal that a surfactant preflood can reverse the wettability of oil-wet fracture surfaces, lower IFT, and lower capillary threshold pressure to reduce oil saturation to less than a critical value to generate stable CO2 foam.


Sign in / Sign up

Export Citation Format

Share Document