scholarly journals Improved Steamflood Analytical Model

2007 ◽  
Vol 10 (06) ◽  
pp. 638-643
Author(s):  
Suandy Chandra ◽  
Daulat Debataraja Mamora

Summary The Jones (1981) steamflood model incorporates oil displacement by steam as described by Myhill and Stegemeier (1978), and a three-component capture factor based on empirical correlations. The main drawback of the model, however, is the unsatisfactory prediction of the oil production peak: It is usually significantly lower than the observed value. Our study focuses on improving this aspect of the Jones model. In our study, we simulated the production performance of a five-spot-steamflood-pattern unit and compared the results against those based on the Jones model (1981). To obtain a satisfactory match between simulation and Jones-analytical-model results, at the start and height of the production peak, the following refinements to the Jones model were necessary. First, the dimensionless steam-zone size AcD was modified to account for the decrease in oil viscosity during steamflood and its dependence on the steam injection rate. Second, the dimensionless volume of displaced oil produced VoD was modified from its square-root format to an exponential form. The modified model gave very satisfactory results for production performance for up to 20 years of simulated steamflood, compared to the original Jones model. Engineers will find the modified model an improved and useful tool for the prediction of steamflood-production performance. Introduction Steamflooding is a major enhanced-oil recovery (EOR) process applied to heavy oil reservoirs. A steamflood typically proceeds through four development phases: reservoir screening, pilot tests, fieldwide implementation, and reservoir management (Hong 1994). Steamflood-performance prediction is essential to provide information for the proper execution of each development phase. Three mathematical models (statistical, numerical, and analytical models) are often used to predict steamflood performance. Statistical models are based on the historical data of steamflood performance from other reservoirs which have similar oil and rock properties. A statistical model, however, does not include all the flow parameters, and thus may be inaccurate for a particular reservoir. Numerical models usually require a large amount of data input with lengthy calculations using computers; and they are usually CPU-, manpower- and time-consuming and also expensive. They may be extremely comprehensive and better serve as tools for research or advanced reservoir analysis. Meanwhile, analytical models are more economical, but at the expense of accuracy and flexibility. They serve as tools for engineering screening of possible reservoir candidates for field testing (Hong 1994). For many years, attempts have been made to provide analytical models for steamflood-production-performance prediction (Marx and Langenheim 1959; Boberg 1966; Mandl and Volek 1969; Neuman 1975; Myhill and Stegemeier 1978; Gomaa 1980; Jones 1981; van Lookeren 1977; Farouq Ali 1970; Miller and Leung 1985; Rhee et al. 1978; Aydelotte et al. 1982). None of these analytical models gives a comparison with simulation results. Miller and Leung (1985) presented comparison between their analytical model and simulation results for cumulative production vs time, but the comparison for production rate vs time is not available.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Pankaj Kumar Sharma ◽  
Vijay Gautam ◽  
Atul Kumar Agrawal

Abstract The present work deals with the development of an analytical model incorporating the effects of anisotropy and strain hardening to predict the springback in V-bending of two-ply sheet metal using a punch profile radius of 15 mm and included a bend angle of 90 deg. In the analytical model, the total bending moment is determined from resulting bending stresses for two different layers arranged in parallel planes one above the other and a new radius of curvature after springback is determined by applying a negative bending moment. The two-ply sheet composed of layers of AA1050 and SS430 is characterized for its tensile properties to be used in analytical and numerical models for prediction of springback. To study the effect of each layer during bending operation, two possible cases of sheet placements during bending and springback are studied; i.e., in the first case, the inner layer is of AA1050 while the SS430 layer is the outer layer whereas in the second case it is opposite. In all the cases of springback experiments when the outer layer is of SS430, the springback values are higher than the values obtained with the specimens when the inner layer is of SS430. This could be attributed to the higher tensile strength of the stainless steel layer and the higher bending radius experienced by it. The springback behaviors are also analyzed by simulations using Hill's anisotropic yield criterion in abaqus software. The springback results obtained by simulations and analytical models are in good agreement in general; however, in some cases, discrepancy of more than 15% is observed in the analytical results when compared with the experimental results.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 618-646
Author(s):  
Ryan Will ◽  
Qian Sun ◽  
Luis F. Ayala

Summary Hydrocarbon-reservoir-performance forecasting is an integral component of the resource-development chain and is typically accomplished using reservoir modeling, by means of either numerical or analytical methods. Although complex numerical models provide rigorous means of capturing and predicting reservoir behavior, reservoir engineers also rely on simpler analytical models to analyze well performance and estimate reserves when uncertainties exist. Arps (1945) empirically demonstrated that certain reservoirs might decline according to simple, exponential, hyperbolic, or harmonic relationships; such behavior, however, does not extend to more-complex scenarios, such as multiphase-reservoir depletion. Because of this limitation, an important research area for many years has been to transform the equations governing flow through porous media in such a way as to express complex reservoir performance in terms of closed analytical forms. In this work, we demonstrate that rigorous compositional analysis can be coupled with analytical well-performance estimations for reservoirs with complex fluid systems, and that the molar decline of individual hydrocarbon-fluid fractions can be expressed in terms of rescaled exponential equations for well-performance analysis. This work demonstrates that, by the introduction of a new partial-pseudopressure variable, it is possible to predict the decline behavior of individual fluid constituents of a variety of gas/condensate-reservoir systems characterized by widely varying richness and complex multiphase-flow scenarios. A new four-region-flow model is proposed and validated to implement gas/condensate-deliverability calculations at late times during variable-bottomhole-pressure (BHP) production. Five case studies are presented to support each of the model capabilities stated previously and to validate the use of liquid-analog rescaled exponentials for the prediction of production-decline behavior for each of the hydrocarbon species.


Author(s):  
Bahaa Shaqour ◽  
Mohammad Abuabiah ◽  
Salameh Abdel-Fattah ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
...  

AbstractAdditive manufacturing is a promising tool that has proved its value in various applications. Among its technologies, the fused filament fabrication 3D printing technique stands out with its potential to serve a wide variety of applications, ranging from simple educational purposes to industrial and medical applications. However, as many materials and composites can be utilized for this technique, the processability of these materials can be a limiting factor for producing products with the required quality and properties. Over the past few years, many researchers have attempted to better understand the melt extrusion process during 3D printing. Moreover, other research groups have focused on optimizing the process by adjusting the process parameters. These attempts were conducted using different methods, including proposing analytical models, establishing numerical models, or experimental techniques. This review highlights the most relevant work from recent years on fused filament fabrication 3D printing and discusses the future perspectives of this 3D printing technology.


2021 ◽  
Vol 48 (4) ◽  
pp. 53-61
Author(s):  
Andrea Marin ◽  
Carey Williamson

Craps is a simple dice game that is popular in casinos around the world. While the rules for Craps, and its mathematical analysis, are reasonably straightforward, this paper instead focuses on the best ways to cheat at Craps, by using loaded (biased) dice. We use both analytical modeling and simulation modeling to study this intriguing dice game. Our modeling results show that biasing a die away from the value 1 or towards the value 5 lead to the best (and least detectable) cheating strategies, and that modest bias on two loaded dice can increase the winning probability above 50%. Our Monte Carlo simulation results provide validation for our analytical model, and also facilitate the quantitative evaluation of other scenarios, such as heterogeneous or correlated dice.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 150
Author(s):  
Yeon-Kyu Park ◽  
Geuk-Nam Kim ◽  
Sang-Young Park

The CANYVAL-C (CubeSat Astronomy by NASA and Yonsei using a virtual telescope alignment for coronagraph) is a space science demonstration mission that involves taking several images of the solar corona with two CubeSats—1U CubeSat (Timon) and 2U CubeSat (Pumbaa)—in formation flying. In this study, we developed and evaluated structural and thermal designs of the CubeSats Timon and Pumbaa through finite element analyses, considering the nonlinearity effects of the nylon wire of the deployable solar panels installed in Pumbaa. On-orbit thermal analyses were performed with an accurate analytical model for a visible camera on Timon and a micro propulsion system on Pumbaa, which has a narrow operating temperature range. Finally, the analytical models were correlated for enhancing the reliability of the numerical analysis. The test results indicated that the CubeSats are structurally safe with respect to the launch environment and can activate each component under the space thermal environment. The natural frequency of the nylon wire for the deployable solar panels was found to increase significantly as the wire was tightened strongly. The conditions of the thermal vacuum and cycling testing were implemented in the thermal analytical model, which reduced the differences between the analysis and testing.


2014 ◽  
Vol 59 (4) ◽  
pp. 1-11
Author(s):  
Lloyd H. Scarborough III ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing stiff pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch-link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies.


Author(s):  
C-M Chen ◽  
R-F Fung

The dynamic equations of a micro-positioning Scott—Russell (SR) mechanism associated with two flexible hinges and an offset are developed to calculate output responses. Both rigid and flexible hinges are considered to explore the results. The main features in the kinematics of the SR mechanism are its displacement amplification and straight-line motion, which are widely needed in practical industries. The manufacturing inaccuracy of the SR mechanism definitely causes geometric offsets of flexure hinges, and affects displacement amplification and straight-line output motion. Analytical models based on kinematics and Hamilton's principle are derived to explore the variation of linearity ratio, magnification factor, and deviation factor due to various offsets and link lengths. From numerical simulations for the SR mechanism with various offsets of flexible hinges in the conditions of different link lengths, it is found that offsets of flexure hinges obviously affect the amplifying factor and linearity ratio, and appear to dominate the changes of magnification factors. Moreover, an analytical model is also used to predict magnification factors due to various offsets. Finally, some conclusions concerning the effects of offset on the performance of the SR mechanism are drawn.


2011 ◽  
Vol 2-3 ◽  
pp. 302-307 ◽  
Author(s):  
Tao Yu ◽  
Qing Kai Han

In the paper, a novel new gravity-constrained (GC) three-wire-driven (TWD) parallel robot is proposed. With its mechanism model, three typical kinematics analytical models, including horizontal up-down motion, pitching motion and heeling motion and their corresponding simulations are given in detail. In static analysis, the change of tensions in the wires is calculated based on previous kinematics analysis. The simulation results show the robot has good movement stability. The paper can provide useful materials to study of dynamics and control on wire-driven robot.


Sign in / Sign up

Export Citation Format

Share Document